- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 与三角形中位线有关的求解问题
- 三角形中位线与三角形面积问题
- 与三角形中位线有关的证明
- 三角形中位线的实际应用
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在△ABC中,AB=5,BC=6,AC=7,点D,E,F分别是△ABC三边的中点,则△DEF的周长为( )


A.12 | B.11 | C.10 | D.9 |
如图,D,E,F分别是△ABC各边的中点,AH是高,若ED=6cm,那么HF的长为( )


A.5 cm | B.6 cm | C.10 cm | D.不能确定 |
如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是 .

已知等腰Rt△ABC和等腰Rt△AED中,∠ACB=∠AED=90°,且AD=AC

(1)发现:如图1,当点E在AB上且点C和点D重合时,若点M、N分别是DB、EC的中点,则MN与EC的位置关系是 ,MN与EC的数量关系是
(2)探究:若把(1)小题中的△AED绕点A旋转一定角度,如图2所示,连接BD和EC,并连接DB、EC的中点M、N,则MN与EC的位置关系和数量关系仍然能成立吗?若成立,请以逆时针旋转45°得到的图形(图3)为例给予证明位置关系成立,以顺时针旋转45°得到的图形(图4)为例给予证明数量关系成立,若不成立,请说明理由.

(1)发现:如图1,当点E在AB上且点C和点D重合时,若点M、N分别是DB、EC的中点,则MN与EC的位置关系是 ,MN与EC的数量关系是
(2)探究:若把(1)小题中的△AED绕点A旋转一定角度,如图2所示,连接BD和EC,并连接DB、EC的中点M、N,则MN与EC的位置关系和数量关系仍然能成立吗?若成立,请以逆时针旋转45°得到的图形(图3)为例给予证明位置关系成立,以顺时针旋转45°得到的图形(图4)为例给予证明数量关系成立,若不成立,请说明理由.
如图,在△ABC 中,AB=AC=12,BC=8, BE 是高,且点 D、F 分别是边 AB、BC 的中点,则△DEF 的周长等于_____________________.

如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:
①线段MN的长;
②△PAB的周长;
③△PMN的面积;
④直线MN,AB之间的距离;
⑤∠APB的大小.
其中会随点P的移动而变化的是( )

①线段MN的长;
②△PAB的周长;
③△PMN的面积;
④直线MN,AB之间的距离;
⑤∠APB的大小.
其中会随点P的移动而变化的是( )

A.②③ | B.②⑤ | C.①③④ | D.④⑤ |
如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为( )


A.7 | B.8 | C.9 | D.10 |