- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 认识多边形
- 多边形的对角线
- + 多边形的内角和
- 多边形内角和问题
- 正多边形的内角问题
- 多(少)算一个角问题
- 多边形截角后的内角和问题
- 复杂图形的内角和
- 多边形的外角和
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
在数学活动课上,研究用正多边形镶嵌平面.请解决以下问题:

(1)用一种正多边形镶嵌平面
例如,用 6 个全等的正三角形镶嵌平面,摆放方案如图所示:
若用 m 个全等的正 n 边形镶嵌平面,求出 m,n 应满足的关系式;
(2)用两种正多边形镶嵌平面
若这两种正多边形分别是边长相等的正三角形和正方形,请画出两种不同的摆放方案;
(3)用多种正多边形镶嵌平面
若镶嵌时每个顶点处的正多边形有 n 个,设这 n 个正多边形的边数分别为 x1,x2,…,xn,求出 x1,x2,…,xn 应满足的关系式.(用含 n 的式子表示)

(1)用一种正多边形镶嵌平面
例如,用 6 个全等的正三角形镶嵌平面,摆放方案如图所示:
若用 m 个全等的正 n 边形镶嵌平面,求出 m,n 应满足的关系式;
(2)用两种正多边形镶嵌平面
若这两种正多边形分别是边长相等的正三角形和正方形,请画出两种不同的摆放方案;
(3)用多种正多边形镶嵌平面
若镶嵌时每个顶点处的正多边形有 n 个,设这 n 个正多边形的边数分别为 x1,x2,…,xn,求出 x1,x2,…,xn 应满足的关系式.(用含 n 的式子表示)
如图,小丽的一块四边形玩具片破了一角,小丽想知道破掉的∠C的度数,她量了∠A,∠B,∠D的度数,就知道了∠C的度数,其原因是( )


A.四边形外角和是360° | B.四边形外角和是180° |
C.四边形内角和是360° | D.四边形内角和是180° |
用一条直线将一个菱形分割成两个多边形,若这两个多边形的内角和分别为M和N,则M+N值不可能是( )
A.360° | B.540° | C.630° | D.720° |
如图,小明从点O出发,前进5m后向右转15°,再前进5m后又向右转15°,…这样一直下去,直到他第一次回到出发点O为止,他所走的路径构成了一个多边形.
(1)小明一共走了多少米?
(2)这个多边形的内角和是多少度?
(1)小明一共走了多少米?
(2)这个多边形的内角和是多少度?
