- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 判断三边能否构成直角三角形
- 图形上与已知两点构成直角三角形的点
- 在网格中判断直角三角形
- 利用勾股定理的逆定理求解
- 勾股定理逆定理的实际应用
- 勾股定理逆定理的拓展问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
请阅读以下材料,并解决问题:
配方法是数学中重要的一种思想方法. 它是指将一个式子或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和的方法. 这种方法常被用到代数恒等变形中,并结合非负数的意义来解决一些问题.
(例1)把二次三项式
进行配方.
解:
-4.
(例2)已知
,求
和
的值.
解:由已知得:
,
即
,
所以
,
所以
.
(1)若
可配方成
(
为常数),求
和
的值;
(2)已知实数
满足
,求
的最大值;
(3)已知
为正实数,且满足
和
,试判断以
为三边的长的三角形的形状,并说明理由.
配方法是数学中重要的一种思想方法. 它是指将一个式子或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和的方法. 这种方法常被用到代数恒等变形中,并结合非负数的意义来解决一些问题.
(例1)把二次三项式

解:

(例2)已知



解:由已知得:

即

所以

所以

(1)若





(2)已知实数



(3)已知




将直角三角形的三条边的长度都扩大同样的倍数后得到的三角形( )
A.仍是直角三角形 | B.一定是锐角三角形 | C.可能是钝角三角形 | D.一定是钝角三角形 |