- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 勾股定理及应用
- + 勾股定理的逆定理
- 判断三边能否构成直角三角形
- 图形上与已知两点构成直角三角形的点
- 在网格中判断直角三角形
- 利用勾股定理的逆定理求解
- 勾股定理逆定理的实际应用
- 勾股定理逆定理的拓展问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
已知a,b,c为△ABC的三条边的长,且满足b2+2ab=c2+2ac.
(1)试判断△ABC的形状,并说明理由;
(2)若a=6,b=5,求△ABC的面积.
(1)试判断△ABC的形状,并说明理由;
(2)若a=6,b=5,求△ABC的面积.
题目:如图,在△ABC中,点D是BC边上一点,连结AD,若AB=10,AC=17,BD=6,AD=8,解答下列问题:
(1)求∠ADB的度数;
(2)求BC的长.
小强做第(1)题的步骤如下:∵AB2=BD2+AD2
∴△ABD是直角三角形,∠ADB=90°.
(1)小强解答第(1)题的过程是否完整,如果不完整,请写出第(1)题完整的解答过程
(2)完成第(2)题.
(1)求∠ADB的度数;
(2)求BC的长.
小强做第(1)题的步骤如下:∵AB2=BD2+AD2
∴△ABD是直角三角形,∠ADB=90°.
(1)小强解答第(1)题的过程是否完整,如果不完整,请写出第(1)题完整的解答过程
(2)完成第(2)题.

如图,一张四边形纸片ABCD,AB=20,BC=16,CD=13,AD=5,对角线AC⊥BC.
(1)求AC的长;
(2)求四边形纸片ABCD的面积;
(3)若将四边形纸片ABCD沿AC剪开,拼成一个与四边形纸片ABCD面积相等的三角形,直接写出拼得的三角形各边高的长.
(1)求AC的长;
(2)求四边形纸片ABCD的面积;
(3)若将四边形纸片ABCD沿AC剪开,拼成一个与四边形纸片ABCD面积相等的三角形,直接写出拼得的三角形各边高的长.

某地管辖A,B,C,D四个镇,其中C,A,D三个镇在一条直线上,相互两镇之间的公路里程如图所示,由于大山阻隔,原来从A,C两镇去D镇都需绕到B镇前往.为了发展经济,缩短A,C两镇到D镇的路程,现决定开凿隧道修通A,C两镇直达D镇的公路AD.公路修通后从A镇去D镇的路程比原来缩短了多少千米?(参考数据:
=32,
≈46.65)



一个三角形的三边长分别为15 cm,20 cm,25 cm,那么它的最长边上的高是 ( )
A.12.5 cm | B.12 cm | C.10 cm | D.9 cm |