- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 勾股定理及应用
- + 勾股定理的逆定理
- 判断三边能否构成直角三角形
- 图形上与已知两点构成直角三角形的点
- 在网格中判断直角三角形
- 利用勾股定理的逆定理求解
- 勾股定理逆定理的实际应用
- 勾股定理逆定理的拓展问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
下列结论中,错误的有( )
①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5;②△ABC的三边长分别为a,b,c,若a2+b2=c2,则∠A=90°;③在△ABC中,若∠A∶∠B∶∠C=1∶5∶6,则△ABC是直角三角形;④若三角形的三边长之比为3∶4∶5,则该三角形是直角三角形.
①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5;②△ABC的三边长分别为a,b,c,若a2+b2=c2,则∠A=90°;③在△ABC中,若∠A∶∠B∶∠C=1∶5∶6,则△ABC是直角三角形;④若三角形的三边长之比为3∶4∶5,则该三角形是直角三角形.
A.0个 | B.1个 | C.2个 | D.3个 |
△ABC 的三边分别是 a,b,c,其对角分别是∠A,∠B,∠C,下列条件不能判定△ABC 是直角三角形的是( )
A.ÐB =ÐA -ÐC | B.a : b : c = 5 :12 :13 | C.b2- a2= c2 | D.ÐA : ÐB : ÐC = 3 : 4 : 5 |
有四根小木棒,它们的长度分别为5 cm,8 cm,12 cm,13 cm,从中选出三根作为一个三角形的三边,如果所构成的三角形为直角三角形,请回答下列问题:
(1)你所选三根木棒的长度分别为多少?请说明理由;
(2)求你所构成的直角三角形斜边上的高.
(1)你所选三根木棒的长度分别为多少?请说明理由;
(2)求你所构成的直角三角形斜边上的高.