- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 勾股定理
- + 勾股定理的应用
- 利用勾股定理求梯子滑落高度
- 利用勾股定理求旗杆高度
- 利用勾股定理求小鸟飞行距离
- 利用勾股定理求大树折断前的高度
- 利用勾股定理解决水杯中筷子问题
- 利用勾股定理解决航海问题
- 利用勾股定理求河宽
- 利用勾股定理求台阶上地毯长度
- 利用勾股定理判断汽车是否超速
- 利用勾股定理判断是否受台风影响
- 利用勾股定理选址使到两地距离相等
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3).
(1)点B到坐标原点的距离为 ;
(2)求AB和BC的长;
(3)若点P在y轴上,当△ABP的面积为3时,请直接写出点P的坐标.
(1)点B到坐标原点的距离为 ;
(2)求AB和BC的长;
(3)若点P在y轴上,当△ABP的面积为3时,请直接写出点P的坐标.

铁路上A,B两站(视为直线上的两点)相距50km,C,D为两村庄(视为两个点),DA⊥AB于点A,CB⊥AB于点B(如图).已知DA=20km,CB=10km,现在要在铁路AB上建一个土特产收购站E,使得C,D两村庄到收购站E的直线距离相等,请你设计出收购站的位置,并计算出收购站E到A站的距离.

一个25米长的梯子AB,斜靠在一竖直的墙AO上,这时的AO距离为24米,如果梯子的顶端A沿墙下滑4米,那么梯子底端B也外移4米,对吗?为什么?

如图,数学活动课上,老师组织学生测量学校旗杆的高度,同学们发现系在旗杆顶端的绳子拉直垂到了地面还多1米,同学们把绳子的末端拉开5米后,发现绳子末端刚好接触地面,求旗杆的高度.(旗杆顶端滑轮上方的部分忽略不计)

如图,一个牧童在小河的南2km的A处牧马,而他正位于他的小屋B的西
km北3km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?


为了推广城市绿色出行,小蓝车公司准备在十圩港沿岸AB段建设一个共享单车停放点,该路段附近有两个广场C和D(如图),CA⊥AB于A、DB⊥AB于B,AB=4km,CA=2km,DB=1km.则停放点E应建在距点A_____km处,才能使它到两广场的距离相等.
