- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 勾股定理
- + 勾股定理的应用
- 利用勾股定理求梯子滑落高度
- 利用勾股定理求旗杆高度
- 利用勾股定理求小鸟飞行距离
- 利用勾股定理求大树折断前的高度
- 利用勾股定理解决水杯中筷子问题
- 利用勾股定理解决航海问题
- 利用勾股定理求河宽
- 利用勾股定理求台阶上地毯长度
- 利用勾股定理判断汽车是否超速
- 利用勾股定理判断是否受台风影响
- 利用勾股定理选址使到两地距离相等
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,一个梯子AB斜靠在一竖直的墙AO上,测得AO=2 m.若梯子的顶端沿墙下滑0.5米,这时梯子的底端也恰好外移0.5米,则梯子的长度AB为( )


A.2.5 m | B.3 m | C.1.5 m | D.3.5 m |
如图,一学校(点M)距公路(直线l)的距离(MA)为1km,在公路上距该校2km处有一车站(点N),该校拟在公路上建一个公交车停靠点(点p),以便于本校职工乘车上下班,要求停靠站建在AN之间且到此校与车站的距离相等,请你计算停靠站到车站的距离.

如图,数学兴趣小组要测量旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),聪明的小红发现:先测出垂到地面的绳子长m,再将绳子拉直(如图2),测出绳子末端C到旗杆底部B的距离n,利用所学知识就能求出旗杆的长,若m=2,n=6,求旗杆AB的长.

生活经验表明,靠墙摆放梯子时,若梯子底端离墙的距离约为梯子长度的
时,梯子比较稳定.如图AB是一长度为6米并且已经稳定摆放的梯子.试说明它的顶端能否达到5.7米高的墙头?

