- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 勾股定理
- + 勾股定理的应用
- 利用勾股定理求梯子滑落高度
- 利用勾股定理求旗杆高度
- 利用勾股定理求小鸟飞行距离
- 利用勾股定理求大树折断前的高度
- 利用勾股定理解决水杯中筷子问题
- 利用勾股定理解决航海问题
- 利用勾股定理求河宽
- 利用勾股定理求台阶上地毯长度
- 利用勾股定理判断汽车是否超速
- 利用勾股定理判断是否受台风影响
- 利用勾股定理选址使到两地距离相等
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
一艘轮船以16海里/时的速度离开港口向东南方向航行,另一艘轮船在同时同地以12海里/时的速度向西南方向航行,它们离开港口3小时相距( )海里.
A.60 | B.30 | C.20 | D.80 |
一道古算题:有执长竿入城门者,横执之多六尺,竖执之多三尺,有老父至,教他斜竿对两角,不多不少刚抵足,借问竿长多少数?
大意如下:某人拿着长竹竿进城门,横着拿竿多六尺,竖着拿竿多三尺,有一个经验丰富的老者,教他斜着拿竹竿进城门,竹竿刚好就是城门斜对角线的长度,正好可以进城,问竹竿长多少尺?(城门为矩形)
大意如下:某人拿着长竹竿进城门,横着拿竿多六尺,竖着拿竿多三尺,有一个经验丰富的老者,教他斜着拿竹竿进城门,竹竿刚好就是城门斜对角线的长度,正好可以进城,问竹竿长多少尺?(城门为矩形)
如图,一个工人拿一个2.5米长的梯子,底端A放在距离墙根C点0.7米处,另一头B点靠墙,如果梯子的顶部下滑0.4米,梯子的底部也向外滑0.4米吗,为什么?.

如图,某人欲从点A处入水横渡一条河,由于水流的影响,他实际上岸的地点C偏离欲到达的地点B200m,结果他在水中实际游了250m,求该河流的宽度为________m.

如图,一架长2.5m的梯子AB斜靠在墙AC上,∠C=90°,此时,梯子的底端B离墙底C的距离BC为0.7m.
(1)求此时梯子的顶端A距地面的高度AC;
(2)如果梯子的顶端A下滑了0.9m,那么梯子的顶端B在水平方向上向右滑动了多远?
(1)求此时梯子的顶端A距地面的高度AC;
(2)如果梯子的顶端A下滑了0.9m,那么梯子的顶端B在水平方向上向右滑动了多远?

如图,设正方体ABCD﹣A1B1C1D1的棱长为1,黑、白两个甲壳虫同时从A点出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是:
白甲壳虫爬行的路线是:
那么当黑、白两个甲壳虫各爬行完第2008条棱分别停止在所到的正方体顶点处时,它们之间的距离是( )


白甲壳虫爬行的路线是:


A.0 | B.1 | C.√2 | D.√3 |