- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 勾股定理
- + 勾股定理的应用
- 利用勾股定理求梯子滑落高度
- 利用勾股定理求旗杆高度
- 利用勾股定理求小鸟飞行距离
- 利用勾股定理求大树折断前的高度
- 利用勾股定理解决水杯中筷子问题
- 利用勾股定理解决航海问题
- 利用勾股定理求河宽
- 利用勾股定理求台阶上地毯长度
- 利用勾股定理判断汽车是否超速
- 利用勾股定理判断是否受台风影响
- 利用勾股定理选址使到两地距离相等
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,是一座大楼相邻的两面墙,现需测量外墙根部两点A,B之间的距离(人不能进入墙内测量).请你按以下要求设计一个方案测量A,B的距离.
(1)画出测量图案;
(2)写出简要的方案步骤;
(3)说明理由.
(1)画出测量图案;
(2)写出简要的方案步骤;
(3)说明理由.

现有一根一端固定在电线杆顶端的钢缆,且钢缆长比电线杆长8米,地面钢缆固定点A到电线杆底部B的距离为12米,电线杆的高度是___________________ 米.

如图,在平面直角坐标系中点A(
,
),B(2
,0),点C为线段OB上一个动点,以AC为腰作等腰直角△ACD,且AC=A




A. (1)△AOB的面积; (2)证明:OC2+CB2=CD2. |

如图,是一块由边长为20cm的正方形地砖铺设的广场,一只鸽子落在点A处,它想先后吃到小朋友撒在B、C处的鸟食,则鸽子至少需要走多远的路程?

台风是一种自然灾害,它以台风中心为圆心在数十千米范围内形成气旋风暴,有极强的破坏力,据气象观察,距沿海某城市A正南220千米的B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心正以15千米/时的速度沿北偏东30°方向向C移动,且台风中心风力不变,若城市受到的风力达到或超过四级,则称受台风影响.
(1)该城市是否会受到这次台风的影响?为什么?
(2)若受到台风影响,那么台风影响该城市的持续时间有多长?
(3)该城市受到台风影响的最大风力为几级?
(1)该城市是否会受到这次台风的影响?为什么?
(2)若受到台风影响,那么台风影响该城市的持续时间有多长?
(3)该城市受到台风影响的最大风力为几级?
