- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 勾股定理
- + 勾股定理的应用
- 利用勾股定理求梯子滑落高度
- 利用勾股定理求旗杆高度
- 利用勾股定理求小鸟飞行距离
- 利用勾股定理求大树折断前的高度
- 利用勾股定理解决水杯中筷子问题
- 利用勾股定理解决航海问题
- 利用勾股定理求河宽
- 利用勾股定理求台阶上地毯长度
- 利用勾股定理判断汽车是否超速
- 利用勾股定理判断是否受台风影响
- 利用勾股定理选址使到两地距离相等
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,△ABC中,∠C=90°,AB=10cm,BC=6cm,若动点P从点C出发,沿线段CA向点A运动,到达A点后停止运动,且速度为每秒2cm,设出发的时间为t秒.
(1)当t为何值时,△PBC是等腰三角形;
(2)过点P作PH⊥AB,垂足为H,当H为AB中点时,求t的值.
(1)当t为何值时,△PBC是等腰三角形;
(2)过点P作PH⊥AB,垂足为H,当H为AB中点时,求t的值.

已知正方形①、②在直线上,正方形③如图放置,若正方形①、②的面积分别27和54,则正方形③的边长为( )


A.81 | B.7 | C.9 | D.12 |
如图,在Rt△ABC中,∠C=90°,以AC、BC为直径的半圆面积分别是12.5πcm2和4.5πcm2,则Rt△ABC的面积为( )


A.24cm2 | B.30cm2 | C.48cm2 | D.60cm2 |
阅读下面的材料:
(1)如图1,在等边三角形ABC内,点P到顶点A,B,C的距离分别是3、4、5,则∠APB等于多少度?由于PA,PB,PC不在同一三角形中,为了解决本题,我们可以将△ABP绕点A逆时针旋转60°到△ACP′处,连接PP′,就可以利用全等的知识,进而将三条线段的长度转化到一个三角形中,从而求出∠APB的度数.请写出(1)的解答过程.
(2)请你利用第(1)题的解答方法解答:如图2,△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点,且∠EAF=45°,求证:BE2+FC2=EF2.
(1)如图1,在等边三角形ABC内,点P到顶点A,B,C的距离分别是3、4、5,则∠APB等于多少度?由于PA,PB,PC不在同一三角形中,为了解决本题,我们可以将△ABP绕点A逆时针旋转60°到△ACP′处,连接PP′,就可以利用全等的知识,进而将三条线段的长度转化到一个三角形中,从而求出∠APB的度数.请写出(1)的解答过程.
(2)请你利用第(1)题的解答方法解答:如图2,△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点,且∠EAF=45°,求证:BE2+FC2=EF2.

如图,将△ABC放在每个小正方形的边长为1的网格中,
点A,B,C均在格点上.
(Ⅰ)计算AB边的长是多少;
(Ⅱ)请在如图所示的网格中,用无刻度的直尺作出一个以AB为边的矩形,使矩形的面积等于△ABC的面积2.5倍.(不要求证明)
点A,B,C均在格点上.
(Ⅰ)计算AB边的长是多少;
(Ⅱ)请在如图所示的网格中,用无刻度的直尺作出一个以AB为边的矩形,使矩形的面积等于△ABC的面积2.5倍.(不要求证明)

如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.
(Ⅰ)计算AC2+BC2的值等于 ;
(Ⅱ)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AC2+BC2,并简要说明画图方法(不要求证明) .
(Ⅰ)计算AC2+BC2的值等于 ;
(Ⅱ)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AC2+BC2,并简要说明画图方法(不要求证明) .

方格纸中每个小方格都是边长为1的正方形,我们把以格点连线为边的多边形称为“格点多边形”.如图①,△ABC是格点三角形.
(1)试在图②中确定格点D,画一个以A、B、C、D为顶点的四边形,使其为轴对称图形;(画出一个即可)
(2)试在图③中画一个“格点正方形”,使其面积等于10.
(1)试在图②中确定格点D,画一个以A、B、C、D为顶点的四边形,使其为轴对称图形;(画出一个即可)
(2)试在图③中画一个“格点正方形”,使其面积等于10.
