如图,已知△ABC,分别以AB,AC为直角边,向外作等腰直角三角形ABE和等腰直角三角形ACD,∠EAB=∠DAC=90°,连结BD,CE交于点F,设AB=m,BC=n.
(1)求证:∠BDA=∠EC

(1)求证:∠BDA=∠EC
A. (2)若m= ![]() (3)当∠ABC=____时,BD最大,最大值为____(用含m,n的代数式表示) (4)试探究线段BF,AE,EF三者之间的数量关系。 |

如图,一圆柱体的底面周长为10cm,高BD为12cm,BC是直径,一只蚂蚁从点D出发沿着圆柱的表面爬行到点C的最短路程为( )cm


A.17 | B.13 | C.12 | D.14 |
如图,小亮拿着等腰三角板玩不小心掉到两墙之间,∠ACB=90°,AC=BC,从三角板的刻度可知AB=20cm,若每块砖的厚度相等,求每块砖的厚度是多少?(结果保留根号)

如图,是2002年8月北京地24届国际数学家大会会标,我国古代的数学家赵爽为证明所作的“弦图”,由4个全等的直角三角形拼合而成.如果图中大,小正方形的面积分别为52和4,那么一个直角三角形的两直角边的积等于( )


A.12 | B.20 | C.24 | D.10 |
如图,△ABC中,∠BAC=90°,BC=6,以△ABC的三边向外作正方形,以AC为边的正方形的面积为25cm2,则正方形M的面积为_____cm2.

定义:如图,点M、N把线段AB分割成AM、MN、NB,若以AM、MN、NB为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股分割点.
(1)已知M、N把线段AB分割成AM、MN、NB,若AM=1.5,MN=2.5,BN=2,则点M、N是线段AB的勾股分割点吗?请说明理由.
(2)已知点M、N是线段AB的勾股分割点,且AM为直角边,若AB=24,AM=6,求BN的长.
(1)已知M、N把线段AB分割成AM、MN、NB,若AM=1.5,MN=2.5,BN=2,则点M、N是线段AB的勾股分割点吗?请说明理由.
(2)已知点M、N是线段AB的勾股分割点,且AM为直角边,若AB=24,AM=6,求BN的长.

如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,每个小正方形的边长均为1.请在网格内绘制一个三角形,三边长分别为
,
,
,并求此三角形的面积.



