沿海城市A接到台风警报,在该市正南方向130km的B处有一台风中心,沿BC方向以15km/h的速度向D移动,已知城市A到BC的距离AD=50km,那么台风中心经过多长时间从B点移到D点?如果在距台风中心30km的圆形区域内都将有受到台风的破坏的危险,正在D点休闲的游人在接到台风警报后的几小时内撤离才可脱离危险?

图①、图②均是5×6的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A、E、F均在格点上.在图①、图②中,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法.
(1)在图①中画一个正方形ABCD,使其面积为5.
(2)在图②中画一个等腰△EFG,使EF为其底边.
(1)在图①中画一个正方形ABCD,使其面积为5.
(2)在图②中画一个等腰△EFG,使EF为其底边.

如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD的E点上,BG=10,当折痕的另一端F在AB边上时,求△EFG的面积.

如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为( )


A.![]() | B.20dm | C.25dm | D.35dm |
《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,
中,
,
,
,求
的长,如果设
,则可列方程为______________.







已知等腰三角形ABC的底边BC=20cm,D是腰AB上一点,且CD=16cm,BD=12cm.
(1)求证:CD⊥AB;
(2)求该三角形的腰的长度.
(1)求证:CD⊥AB;
(2)求该三角形的腰的长度.

为了迎接新年的到来,同学们做了许多拉花布置教室,小明搬来一架高为2.5m的木梯,想把拉花桂到2.4m 的墙上,如梯角应距墙角_______m.
边长为1的小正方形网格中,点A,B,C均落在格点上.
(1)猜想△ABC的形状 ,并证明;
(2)直接写出△ABC的面积= ;
(3)画出△ABC关于直线l的轴对称图形△A1B1C1.
(1)猜想△ABC的形状 ,并证明;
(2)直接写出△ABC的面积= ;
(3)画出△ABC关于直线l的轴对称图形△A1B1C1.

下列条件中,不能判断△ABC是直角三角形的是( )
A.∠A:∠B:∠C=1:1:2 | B.a:b:c=3:4:5 |
C.∠A:∠B:∠C=3:4:5 | D.a:b:c=1:2:![]() |