- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 三角形基础
- + 全等三角形
- 全等三角形的概念及性质
- 三角形全等的判定
- 角平分线的性质与判定
- 线段垂直平分线
- 等腰三角形
- 勾股定理
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
我们知道:有一内角为直角的三角形叫做直角三角形.类似地我们定义:有一内角为45°的三角形叫做半直角三角形.如图,在平面直角坐标系中,O为原点,A(4,0),B(-4,0),D是y轴上的一个动点,∠ADC=90°(A、D、C按顺时针方向排列), BC与经过A、B、D三点的⊙M交于点E,DE平分∠ADC,连结AE,B

(1)求证:ΔABC是半直角三角形;
(2)求证:∠DEC=∠DEA;
(3)若点D的坐标为(0,8),求AE的长;
(4)BC交y轴于点N,问
的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由.
A.显然ΔDCE、ΔDEF、ΔDAE是半直角三角形. |

(1)求证:ΔABC是半直角三角形;
(2)求证:∠DEC=∠DEA;
(3)若点D的坐标为(0,8),求AE的长;
(4)BC交y轴于点N,问

作⊙O的内接正六边形ABCDEF,甲、乙两人的作法分别是:
甲:第一步:在⊙O上任取一点A,从点A开始,以⊙O的半径为半径,在⊙O上依次截取点B,C,D,E,F. 第二步:依次连接这六个点.
乙:第一步:任作一直径AD. 第二步:分别作OA,OD的中垂线与⊙O相交,交点从点A开始,依次为点B,C,E,F. 第三步:依次连接这六个点.
对于甲、乙两人的作法,可判断( )
甲:第一步:在⊙O上任取一点A,从点A开始,以⊙O的半径为半径,在⊙O上依次截取点B,C,D,E,F. 第二步:依次连接这六个点.
乙:第一步:任作一直径AD. 第二步:分别作OA,OD的中垂线与⊙O相交,交点从点A开始,依次为点B,C,E,F. 第三步:依次连接这六个点.
对于甲、乙两人的作法,可判断( )
A.甲正确,乙错误 | B.甲、乙均错误 |
C.甲错误,乙正确 D.甲、乙均正确 |
如图,在等腰直角
中,
,以B为圆心,小于
的长为半径画弧,分别交
,
于点E,F,分别以点E,F为圆心,大于
的长为半径画弧,两弧交于点P,作射线
交
于点O,在射线
上作
,连接
,
.下列说法不正确的是( )














A.![]() | B.![]() | C.![]() | D.若四边形![]() ![]() |
如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.

(1)求证:△ABE≌△CDF;
(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.

(1)求证:△ABE≌△CDF;
(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.
如图,已知BD是菱形ABCD的一条对角线,请仅用无刻度的直尺,分别按下列要求画图.
(1)如图,点E在AB上,连接DE,在BC上取点F,使
;

(2)如图,
为等腰直角三角形,
,在菱形ABCD内取点F,使四边形BEDF为正方形.
(1)如图,点E在AB上,连接DE,在BC上取点F,使


(2)如图,



如图,点E,F分别在
的边BC,AD上.

(1)若
,求证:四边形AECF是平行四边形;
(2)请在图2中用圆规和直尺画出四边形AECF,使得四边形AECF是菱形.(不写作法,保留作图痕迹)


(1)若

(2)请在图2中用圆规和直尺画出四边形AECF,使得四边形AECF是菱形.(不写作法,保留作图痕迹)
如图,在
中,对角线
为
的中点,经过点
的直线交
于点
,交
于点
,连接
.现在添加一个适当的条件,使四边形
是菱形,下列条件:①
;②
;③
为
的中点.其中正确的有( )
















A.0个 | B.1个 | C.2个 | D.3个 |
如图,
是直线,且
,点
分别在
上(直线
与
不垂直).请用尺规在图中作出矩形
,使得点
在
上.(保留作图痕迹,不写作法,并证明你所作出的图形是矩形)









