一个零件的形状如图,按规定∠A=90°,∠B和∠C应分别是 32°和21°,检验工人量得∠BDC=149°,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由。

问题情境
如图 1,△ABC 中,沿∠BAC 的平分线 AB1 折叠,剪掉重叠部分;将余下部分沿∠B1A1C 的平分线 A1B2折叠,剪掉重叠部分;如此反复操作,沿∠Bn An C 的平分线 An Bn-1 折叠,点 Bn与点 C 重合,我们就称∠BAC是△ABC 的正角.

以图 2 为例,△ABC 中,∠B=70°,∠C=35°,若沿∠BAC 的平分线 AB1折叠,则∠AA1B=70°.沿 A1B1剪掉重叠部分,在余下的△B1A1C 中,由三角形的内角和定理可知∠A1B1C=35°,若沿∠B1A1C 的平分线 A1B2第二次折叠,则点 B1与点 C 重合. 此时,我们就称∠BAC 是△ABC 的正角.
探究发现
(1)△ABC 中,∠B= 2∠C ,则经过两次折叠后,∠BAC 是不是△ABC 的正角? (填“是”或“不是” ) .
(2)小明经过三次折叠发现∠BAC 是△ABC 的正角,则∠B 与∠C (不妨设∠B >∠C ) 之间的等量关系为 .
根据以上内容猜想:若经过 n 次折叠∠BAC 是△ABC 的正角,则∠B 与∠C (不妨设∠B>∠C ) 之间的等量关系为 .
应用提升
(3)如果一个三角形的最小角是 10°,直接写出此三角形另外两个角的度数,使得此三角形的三个角均是它的正角.
如图 1,△ABC 中,沿∠BAC 的平分线 AB1 折叠,剪掉重叠部分;将余下部分沿∠B1A1C 的平分线 A1B2折叠,剪掉重叠部分;如此反复操作,沿∠Bn An C 的平分线 An Bn-1 折叠,点 Bn与点 C 重合,我们就称∠BAC是△ABC 的正角.

以图 2 为例,△ABC 中,∠B=70°,∠C=35°,若沿∠BAC 的平分线 AB1折叠,则∠AA1B=70°.沿 A1B1剪掉重叠部分,在余下的△B1A1C 中,由三角形的内角和定理可知∠A1B1C=35°,若沿∠B1A1C 的平分线 A1B2第二次折叠,则点 B1与点 C 重合. 此时,我们就称∠BAC 是△ABC 的正角.
探究发现
(1)△ABC 中,∠B= 2∠C ,则经过两次折叠后,∠BAC 是不是△ABC 的正角? (填“是”或“不是” ) .
(2)小明经过三次折叠发现∠BAC 是△ABC 的正角,则∠B 与∠C (不妨设∠B >∠C ) 之间的等量关系为 .
根据以上内容猜想:若经过 n 次折叠∠BAC 是△ABC 的正角,则∠B 与∠C (不妨设∠B>∠C ) 之间的等量关系为 .
应用提升
(3)如果一个三角形的最小角是 10°,直接写出此三角形另外两个角的度数,使得此三角形的三个角均是它的正角.
1.概念学习.已知
,点
为其内部一点,连接
、
、
,在
、
、
中,如果存在一个三角形,其内角与
的三个内角分别相等,那么就称点
为
的等角点.

2.理解应用
(1)判断以下两个命题是否为真今题,若为真令题,则在相应横线内写“真命题”;反之,则写“假命题”.
①内角分别为
、
、
的三角形存在等角点; ;
②任意的三角形都存在等角点; ;
(2)如图①,点
是锐角
的等角点,若
,探究图①中,
、
、
之间的数量关系,并说明理由.
3.解决问题
如图②,在
中,
,若
的三个内角的角平分线的交点
是该三角形的等角点,求
三角形三个内角的度数.












2.理解应用
(1)判断以下两个命题是否为真今题,若为真令题,则在相应横线内写“真命题”;反之,则写“假命题”.
①内角分别为



②任意的三角形都存在等角点; ;
(2)如图①,点






3.解决问题
如图②,在




