(10分)如图,在等腰RT△
中,
,
,点
是斜边
的中点,点
、
分别为
、
边上的点,且
.

(1)判断
与
的大小关系,并说明理由;
(2)若
,
,求△
的面积.











(1)判断


(2)若



已知:如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.试解答下列问题:

(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关 ;
(2)在图2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.利用(1)的结论,试求∠P的度数;
(3)如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系?并说明理由.

(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关 ;
(2)在图2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.利用(1)的结论,试求∠P的度数;
(3)如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系?并说明理由.
已知:如图A,△ABC各角的平分线AD,BE,CF交于点O.
(1)试说明∠BOC=90°+
∠BAC;
(2)如图B,过点O作OG⊥BC于G,试判断∠BOD与∠COG的大小关系(大于,小于或等于),并说明理由.

(1)试说明∠BOC=90°+

(2)如图B,过点O作OG⊥BC于G,试判断∠BOD与∠COG的大小关系(大于,小于或等于),并说明理由.

已知,如图:△ABC是等腰直角三角形,∠ABC=90°,AB=10,D为△ABC外一点,连接AD、BD,过D作DH⊥AB,垂足为H,交AC于E.

(1)若△ABD是等边三角形,求DE的长;
(2)若BD=AB,且tan∠HDB=
,求DE的长.

(1)若△ABD是等边三角形,求DE的长;
(2)若BD=AB,且tan∠HDB=
