某新建住宅小区里,有一块三角形绿地如图所示,现准备在其中安装一个照明灯P,使它到绿地各边的距离相等.请你在图中确定安装照明灯P的位置.

如图1,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,分别与BA、CD的延长线交于点M、N,则∠BME=∠CNE(不需证明).
(温馨提示:在图1中,连接BD,取BD的中点H,连接HE、HF,根据三角形中位线定理,证明HE=HF,从而∠1=∠2,再利用平行线性质,可证得∠BME=∠CNE.)
问题一:如图2,在四边形ADBC中,AB与CD相交于点O,AB=CD,E、F分别是BC、AD的中点,连接EF,分别交DC、AB于点M、N,判断△OMN的形状,并说明理由;
问题二:如图3,在△ABC中,AC>AB,D点在AC上,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,与BA的延长线交于点G,若∠EFC=60°,连接GD,判断△AGD的形状并并说明理由.

(温馨提示:在图1中,连接BD,取BD的中点H,连接HE、HF,根据三角形中位线定理,证明HE=HF,从而∠1=∠2,再利用平行线性质,可证得∠BME=∠CNE.)
问题一:如图2,在四边形ADBC中,AB与CD相交于点O,AB=CD,E、F分别是BC、AD的中点,连接EF,分别交DC、AB于点M、N,判断△OMN的形状,并说明理由;
问题二:如图3,在△ABC中,AC>AB,D点在AC上,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,与BA的延长线交于点G,若∠EFC=60°,连接GD,判断△AGD的形状并并说明理由.

如图,CF是△ABC的外角∠ACM的平分线,且CF∥AB,∠ACF=50°,则∠B=( ).


A.40° | B.50° | C.60° | D.80° |
如图,AD是△ABC的角平分线,∠C=90°,BC=9cm,BD=5cm,则点D到AB的距离是( )

A.4cm | B.5cm | C.6cm | D.9 cm |

如图,在△ABC中,∠ACB=90°,CD⊥AB于D.把三角形沿AE对折使点C落在AB边上的点F上,CD与折痕AE相交于G,连结FG并延长交AC于H.
(1)判断FH与BC的位置关系,并说明理由;
(2)判断HG与DG的数量关系,并说明理由.

(1)判断FH与BC的位置关系,并说明理由;
(2)判断HG与DG的数量关系,并说明理由.
