用一条长为16cm的细绳围成一个等腰三角形,若其中有一边的长为4cm,则该等腰三角形的腰长为( )
A.4cm | B.6cm | C.4cm或6cm | D.4cm或8cm |
探究与发现:如图1所示的图形,像我们常见的学习用品--圆规.我们不妨把这样图形叫做“规形图”,

(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;
(2)请你直接利用以上结论,解决以下三个问题:
①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,∠A=40°,则∠ABX+∠ACX等于多少度;
②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数;
③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度数.

(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;
(2)请你直接利用以上结论,解决以下三个问题:
①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,∠A=40°,则∠ABX+∠ACX等于多少度;
②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数;
③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度数.
如图,点C为线段AB上一点,△ACM, △CBN是等边三角形,连结AN,交MC于点E,连结MB交CN于

A. (1)求证:AN=BM; (2)求证: ∠CEA=∠CFM . |

如果一个三角形的两条边的和是第三边的两倍,则称这个三角形是“优三角形”,这两条边的比称为“优比”(若这两边不等,则优比为较大边与较小边的比),记为
.
(1)命题:“等边三角形为优三角形,其优比为1”,是真命题还是假命题?
(2)已知
为优三角形,
,
,
,

①如图1,若
,
,
,求
的值.
②如图2,若
,求优比
的取值范围.
(3)已知
是优三角形,且
,
,求
的面积.

(1)命题:“等边三角形为优三角形,其优比为1”,是真命题还是假命题?
(2)已知





①如图1,若




②如图2,若


(3)已知



