- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 几何图形初步
- 相交线与平行线
- + 三角形
- 三角形基础
- 全等三角形
- 等腰三角形
- 勾股定理
- 四边形
- 圆
- 命题与证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,把长方形ABCD沿对角线BD向上对折,C与C’为对应点,BC’与AD交于点E,若∠DBC=30°,AE=2,则BC=___________.


一个三角形如果有两边的垂直平分线的交点在第三边上,那么这个三角形是( )
A.等腰三角形; | B.等边三角形; | C.直角三角形; | D.等腰直角三角形. |
如图是方格纸,方格纸中的每个小正方形的边长均为1.点A和点B在方格纸中的格点上,在图中画出△ABC(点C在方格纸中的格点上),使△ABC为直角三角形,这样的C点有 个.


如果我们定义:“到三角形的两个顶点距离相等的点,叫做此三角形的开心点。”那么:

(1)如图1,观察并思考,△ABC的开心点有 个
(2)如图2,CD为等边三角形ABC的高,开心点P在高CD上,且PD=
,则∠APB的度数为
(3)已知△ABC为直角三角形,斜边BC=5,AB=3,开心点P在AC边上,试探究PA的长。

(1)如图1,观察并思考,△ABC的开心点有 个
(2)如图2,CD为等边三角形ABC的高,开心点P在高CD上,且PD=

(3)已知△ABC为直角三角形,斜边BC=5,AB=3,开心点P在AC边上,试探究PA的长。
如图,在△ABC中,∠C=90°,∠A=30°,AC=6,点P是线段AC上的一动点,作PD⊥AC,垂足为P,交AB于点D,设AP=t(0<t<6).设△APD关于直线PD的对称的图形与四边形BCPD重叠部分的面积为S.

⑴点A关于直线PD的对称点A′与点C重合时,t =________;
⑵求S与t的函数关系式.

⑴点A关于直线PD的对称点A′与点C重合时,t =________;
⑵求S与t的函数关系式.