- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 几何图形初步
- 相交线与平行线
- + 三角形
- 三角形基础
- 全等三角形
- 等腰三角形
- 勾股定理
- 四边形
- 圆
- 命题与证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,四边形ABCD中,∠F为四边形ABCD的∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的锐角,若设∠A=α,∠D=β;

(1)如图①,α+β>180°,试用α,β表示∠F;
(2)如图②,α+β<180°,请在图中画出∠F,并试用α,β表示∠F;
(3)一定存在∠F吗?如有,求出∠F的值,如不一定,指出α,β满足什么条件时,不存在∠F.

(1)如图①,α+β>180°,试用α,β表示∠F;
(2)如图②,α+β<180°,请在图中画出∠F,并试用α,β表示∠F;
(3)一定存在∠F吗?如有,求出∠F的值,如不一定,指出α,β满足什么条件时,不存在∠F.
下列说法正确的是( )
A.不等边三角形一定是锐角三角形 |
B.三角形ABC也可表示为![]() |
C.各边都相等的多边形是正多边形 |
D.有两个内角分别为20°和50°的三角形一定是钝角三角形 |
在等边△ABC中,点D、E分别是边AC、AB上的点(不与A、B、C重合),点P是平面内一动点。设∠PDC=∠1,∠PEB=∠2,∠DPE=∠α.
(1)若点P在边BC上运动(不与点B和点C重合),如图(1)所示.


则∠1+∠2= .(用α的代数式表示)
(2)若点P在△ABC的外部,如图(2)所示.则∠α、∠1、∠2之间有何关系?写出你的结论,并说明理由.
(3)当点P在边BC的延长线上运动时,试画出相应图形,并写出∠α、∠1、∠2之间的关系式.(不需要证明)
(1)若点P在边BC上运动(不与点B和点C重合),如图(1)所示.


则∠1+∠2= .(用α的代数式表示)
(2)若点P在△ABC的外部,如图(2)所示.则∠α、∠1、∠2之间有何关系?写出你的结论,并说明理由.
(3)当点P在边BC的延长线上运动时,试画出相应图形,并写出∠α、∠1、∠2之间的关系式.(不需要证明)
一位模型赛车手遥控一辆赛车,先前进一米,然后原地逆时针方向旋转
,被称为一次操作,若5次操作后发现赛车回到出发点,则
°角为( )


A.72° | B.108°或144° | C.144° | D.72°或144° |
如图所示,在四边形ABCD中,∠A=80°,∠C=75°,∠ADE为四边形ABCD的一个外角,且∠ADE=125°,试求出∠B的度数.

