生活中处处有数学,下列原理运用错误的是
.


A.建筑工人砌墙时拉的参照线是运用“两点之间线段最短”的原理 |
B.修理损坏的椅子腿时斜钉的木条是运用“三角形稳定性”的原理 |
C.测量跳远的成绩是运用“垂线段最短”的原理 |
D.将车轮设计为圆形是运用了“圆的旋转对称性”原理 |
如图,直线I表示一条公路,点A, B表示两个村庄.现要在公路l上建一个加油站P.
(1)加油站P到A, B两个村庄距离相等,用直尺(无刻度)和圆规在图l中作出P的位置.
(2)若点A,B到直线l的距离分别是1km和4km,且A,B两个村庄之间的距离为5km,加油站P到A, B两个村庄之间的距离最小,在图2中作出P的位置(作图工具不限),最短距离为___ km.
(1)加油站P到A, B两个村庄距离相等,用直尺(无刻度)和圆规在图l中作出P的位置.
(2)若点A,B到直线l的距离分别是1km和4km,且A,B两个村庄之间的距离为5km,加油站P到A, B两个村庄之间的距离最小,在图2中作出P的位置(作图工具不限),最短距离为___ km.

如图,圆柱形容器高为16cm,底面周长为24cm,在杯内壁离杯底的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯子的上沿蜂蜜相对的点A处,则蚂蚁A处到达B处的最短距离为多少?

如图,已知△ABC中,AB=AC=12cm,∠B=∠C,BC=8cm,点D为AB的中点.

(1)如果点P在线段BC上以2cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.
①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,则经过 后,点P与点Q第一次在△ABC的 边上相遇?(在横线上直接写出答案,不必书写解题过程)

(1)如果点P在线段BC上以2cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.
①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,则经过 后,点P与点Q第一次在△ABC的 边上相遇?(在横线上直接写出答案,不必书写解题过程)
已知M、N直线l上两点,MN=20,O、P为线段MN上两动点,过O、P分别作长方形OABC与长方形PDEF(如图),其中,两边OA、PF分别在直线l上,图形在直线l的同侧,且OA=PF=4,CO=DP=3,动点O从点M出发,以1单位/秒的速度向右运动;同时,动点P从点N出发,以2单位/秒的速度向左运动,设运动的时间为t秒.
(1)若t=2.5秒,求点A与点F的距离;
(2)求当t为何值时,两长方形重叠部分为正方形;
(3)运动过程中,在两长方形没有重叠部分前,若能使线段AB、BC、AF的长构成三角形,求t的取值范围.
(1)若t=2.5秒,求点A与点F的距离;
(2)求当t为何值时,两长方形重叠部分为正方形;
(3)运动过程中,在两长方形没有重叠部分前,若能使线段AB、BC、AF的长构成三角形,求t的取值范围.

已知:线段MN=a.

(1)求作:边长为
a的正三角形AB
(2)若a=10cm.求(1)中正三角形ABC的内切圆的半径.

(1)求作:边长为

A.(要求:尺规作图,不写作法但保留作图痕迹) |
如图,点P是∠AOB内部的一点,∠AOB=30°,OP=8cm,M,N是OA,OB上的两个动点,则△MPN周长的最小值_____cm.
