刷题首页
题库
初中数学
题干
如图,直线I表示一条公路,点A, B表示两个村庄.现要在公路l上建一个加油站P.
(1)加油站P到A, B两个村庄距离相等,用直尺(无刻度)和圆规在图l中作出P的位置.
(2)若点A,B到直线l的距离分别是1km和4km,且A,B两个村庄之间的距离为5km,加油站P到A, B两个村庄之间的距离最小,在图2中作出P的位置(作图工具不限),最短距离为__
_ km.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-23 03:44:28
答案(点此获取答案解析)
同类题1
如图,在公路 MN 两侧分别有 A
, A
......A
,七个工厂,各工厂与公路 MN(图中粗线)之间有小公路连接.现在需要在公路 MN 上设置一个车站,选择站址的标准是“使各工厂到车站的距离之和越小越好”.则下面结论中正确的是( ).
①车站的位置设在 C 点好于 B 点;
②车站的位置设在 B 点与 C 点之问公路上任何一点效果一样;
③车站位置的设置与各段小公路的长度无关.
A.①
B.②
C.①③
D.②③
同类题2
如图,∠MON内有定点P.
(1)在射线OM上找点A,使点A到点P和点O的距离相等(保留作图痕迹);
(2)在射线ON上找点B,使△ABP周长最短(保留作图痕迹).
同类题3
如图1,在平面直角坐标系
中,直线
AB
与
轴交于点
A
、与
轴交于点
B
,且
∠
ABO
=45°,
A
(-6,0),直线
BC
与直线
AB
关于
轴对称.
(1)求△
ABC
的面积;
(2)如图2,
D
为
OA
延长线上一动点,以
BD
为直角边,
D
为直角顶点,作等腰直角△
BDE
,求证:
AB
⊥
AE
;
(3)如图3,点
E
是
轴正半轴上一点,且
∠
OAE
=30°,
AF
平分
∠
OAE
,点
M
是射线
AF
上一动点,点
N
是线段
AO
上一动点,判断是否存在这样的点
M
,
N
,使
OM
+
NM
的值最小?若存在,请写出其最小值,并加以说明.
同类题4
如图,在棱长为
米的正方体
的表面上,一只蚂蚁从顶点
爬到顶点
的最短距离是________米.
同类题5
一块长方体木块的各棱长如图所示,一只蜘蛛在木块的一个顶点A处,一只苍蝇在这个长方体上和蜘蛛相对的顶点B处,蜘蛛急于捉住苍蝇,沿着长方体的表面向上.
(1)如果D是棱的中点,蜘蛛沿“AD→DB”路线爬行,它从A点爬到B点所走的路程为多少;
(2)你认为“AD→DB”是最短路线吗?如果你认为不是,请计算出最短的路程.
相关知识点
图形的性质
几何图形初步
直线、射线、线段
尺规作图——作垂线
用勾股定理构造图形解决问题