(本小题满分11分)已知关于x的函数y=m-x-(m-1).
(1)m=__________时,y=m-x-(m-1)是一次函数;
(2)求证:对任何实数m,y=m-x-(m-1)的图像与都有公共点;
(3)若是关于的二次函数y=m-x-(m-1)的图像与x有两个不同的公共点A、B (点A在点B左边),图像顶点为C,且△ABC是等腰直角三角形,求m的值;
(4)是否存在这样的点P,使得对任何实数m,y=m-x-(m-1)的图像都经过P点?若存在,求出所有P的坐标;若不存在,请说明理由.
当前题号:1 | 题型:解答题 | 难度:0.99
如图,已知二次函数与一次函数 的图像相交于点A(-3,5),B(7,2),则能使 成立的x的取值范围是(    )
A.B.C.D.
当前题号:2 | 题型:单选题 | 难度:0.99
在同一平面直角坐标系中,函数y=kx+k和函数y=﹣kx2+4x+4(k是常数,且k≠0)的图象可能是()
A.B.C.D.
当前题号:3 | 题型:单选题 | 难度:0.99
如图,直线y=kx+c与抛物线y=ax2+bx+c的图象都经过y轴上的D点,抛物线与x轴交于A、B两点,其对称轴为直线x=1,且OA=OD.直线y=kx+c与x轴交于点C(点C在点B的右侧).则下列命题中正确命题的个数是( )
①abc>0;②3a+b>0;③﹣1<k<0;④k>a+b;⑤ac+k>0.
A.1B.2C.3   D. 4
当前题号:4 | 题型:单选题 | 难度:0.99
(本题12分)如图,已知是一次函数的图象和反比例函数的图象的两个交点.

(1)求一次函数、反比例函数的关系式;
(2)求△AOB的面积.
(3)当自变量x满足什么条件时,y1>y2.(直接写出答案)(4)将反比例函数的图象向右平移n(n>0)个单位,得到的新图象经过点(3,-4),求对应的函数关系式y3.(直接写出答案)
当前题号:5 | 题型:解答题 | 难度:0.99
已知函数y1=ax2+bx,y2=ax+b(ab≠0).在同一平面直角坐标系中.
(1)若函数y1的图象过点(﹣1,0),函数y2的图象过点(1,2),求a,b的值.
(2)若函数y2的图象经过y1的顶点.
①求证:2a+b=0;
②当1<x<时,比较y1,y2的大小.
当前题号:6 | 题型:解答题 | 难度:0.99
如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.

(1)求抛物线的解析式;
(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;
(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.
当前题号:7 | 题型:解答题 | 难度:0.99
在平面直角坐标系中,直线分别与x轴,y轴交于点,点C是第一象限内的一点,且,抛物线经过两点,与x轴的另一交点为
A.
(1)求此抛物线的解析式;
(2)判断直线的位置关系,并证明你的结论;
(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.
当前题号:8 | 题型:解答题 | 难度:0.99
已知抛物线y=ax2+bx﹣3经过A(﹣1,0)、B(3,0)两点,与y轴交于C点.
(1)求抛物线的解析式;
(2)如图①,抛物线的对称轴上有一点P,且点P在x轴下方,线段PB绕点P顺时针旋转90°,点B的对应点B′恰好落在抛物线上,求点P的坐标.
(3)如图②,直线y=x+交抛物线于A、E两点,点D为线段AE上一点,连接BD,有一动点Q从B点出发,沿线段BD以每秒1个单位的速度运动到D,再沿DE以每秒2个单位的速度运动到E,问:是否存在点D,使点Q从点B到E的运动时间最少?若存在,请求出点D的坐标;若不存在,请说明理由.
当前题号:9 | 题型:解答题 | 难度:0.99
如图,点是边长为的正方形对角线上一个动点(不重合),以为圆心,长为半径画圆弧,交线段于点,联结,与交于点.设的长为的面积为.

(1)判断的形状,并说明理由;
(2)求之间的函数关系式,并写出定义域;
(3)当四边形是梯形时,求出的值.
当前题号:10 | 题型:解答题 | 难度:0.99