- 数与式
- 方程与不等式
- 函数
- 一次函数的实际应用——分配方案问题
- 一次函数的实际应用——最大利润问题
- 一次函数的实际应用——行程问题
- 一次函数的实际应用——几何问题
- + 一次函数的实际应用——其他问题
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
某校组织学生到外地进行综合实践活动,共有680名学生参加,并携带300件行李.学校计划租用甲、乙两种型号的汽车共20辆.经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.
⑴如何安排甲、乙两种汽车可一次性地将学生和行李全部运走?有哪几种方案?
⑵如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案
⑴如何安排甲、乙两种汽车可一次性地将学生和行李全部运走?有哪几种方案?
⑵如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案
某人在银行的信用卡存入2万元,每次取出50元,若卡内余额为 y(元),取钱的次数为x.(利息忽略不计)
(1)、写出y与x之间的函数关系式,并求出自变量的取值范围?
(2)、取多少次钱以后,余额为原存款的四分之一?
(1)、写出y与x之间的函数关系式,并求出自变量的取值范围?
(2)、取多少次钱以后,余额为原存款的四分之一?
某城市自来水收费实行阶梯水价,收费标准如下表所示,用户5月份交水费45元,则所用水为__ 方.
月用水量 | 不超过12方部分 | 超过12方不超过18吨部分 | 超过18方部分 |
收费标准(元/方) | 2 | 2.5 | 3 |
(1)填写下表,并观察下列两个代数式的值的变化情况.
(2)随着n的值逐渐变大,两个代数式的值如何变化?
(3)估计一下,哪个代数式的值先超过100?
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
5n+6 | | | | | | | | |
n2 | | | | | | | | |
(2)随着n的值逐渐变大,两个代数式的值如何变化?
(3)估计一下,哪个代数式的值先超过100?
弹簧挂上物体后会伸长,已知一弹簧的长度(cm)与所挂物体的重量(kg)之间的关系如下表:
(1)当所挂物体的重量为3kg时,弹簧的长度是_____________cm;
(2)如果所挂物体的重量为xkg,弹簧的长度为ycm,根据上表写出y与x的关系式;
(3)当所挂物体的重量为5.5kg时,请求出弹簧的长度。
(4)如果弹簧的最大伸长长度为20cm,则该弹簧最多能挂多重的物体?
所挂物体的重量(kg) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
弹簧的长度(cm) | 12 | 12.5 | 13 | 13.5 | 14 | 14.5 | 15 | 15.5 |
(2)如果所挂物体的重量为xkg,弹簧的长度为ycm,根据上表写出y与x的关系式;
(3)当所挂物体的重量为5.5kg时,请求出弹簧的长度。
(4)如果弹簧的最大伸长长度为20cm,则该弹簧最多能挂多重的物体?
某公司市场营销部的个人月收入与其每月的销售量成一次函数关系,其图像如图所示,由图中给出的信息可知,营销人员没有销售时的收入是( )


A.310元 | B.300元 | C.290元 | D.280元 |
某校运动会需购买A、B两种奖品共100件
、B两种奖品单价分别为10元、15元
设购买A种奖品m件,购买两种奖品的总费用为W元.
写出
元
与
件
之间的函数关系式;
若购买两种奖品的总费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,求出自变量m的取值范围,并确定最少费用W的值.








根据研究弹簧长度与重物重量的实验表格,下列说法错误的是( )


A.自变量是重物重量x,因变量是弹簧长度y | B.弹簧原长8cm |
C.重物重量每增加1kg,弹簧长度伸长4cm | D.当悬挂重物重量为6kg时,弹簧伸长12cm |
某医药研究所开发一种新药,如果成人按规定的剂量服用,据监测:服药后每毫升血液中含药量y与时间t之间近似满足如图所示曲线:

(1)分别求出
和
时,y与t之间的函数关系式;
(2)据测定:每毫升血液中含药量不少于4微克时治疗疾病有效,假如某病人一天中第一次服药为7:00,那么服药后几点到几点有效?

(1)分别求出


(2)据测定:每毫升血液中含药量不少于4微克时治疗疾病有效,假如某病人一天中第一次服药为7:00,那么服药后几点到几点有效?