- 数与式
- 方程与不等式
- 函数
- 一次函数的实际应用——分配方案问题
- 一次函数的实际应用——最大利润问题
- 一次函数的实际应用——行程问题
- 一次函数的实际应用——几何问题
- + 一次函数的实际应用——其他问题
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
一般成年人的脚长(厘米)与鞋码(码)有如下关系:
(1)若某人的脚长为26厘米,他应穿多少码的鞋?
(2)请建立鞋码
(厘米)与脚长
(码)之间的函数表达式;
(3)我国著名篮球运动员姚明穿53码的鞋,请你根据以上关系计算他的脚长.
脚长![]() | 23 | 23.5 | 24 | 24.5 | … |
鞋码![]() | 36 | 37 | 38 | 39 | … |
(1)若某人的脚长为26厘米,他应穿多少码的鞋?
(2)请建立鞋码


(3)我国著名篮球运动员姚明穿53码的鞋,请你根据以上关系计算他的脚长.
如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.人体构造学的研究成果表明,一般情况下人的指距
和身高
成如下所示的关系.

(1)直接写出身高
与指距
的函数关系式: .
(2)姚明的身高是226厘米,可预测他的指距约为多少?(精确到0.1厘米)



(1)直接写出身高


(2)姚明的身高是226厘米,可预测他的指距约为多少?(精确到0.1厘米)

如图,自行车链条每节链条的长度为2.5cm ,交叉重叠部分的圆的直径为0.8cm.
(1)尝试: 2节链条总长度是________
, 3节链条总长度是________
.
(2)发现:用含
的代数式表示
节链条总长度是________.(要求填写最简结果)
(3)应用:如果某种型号自行车链条总长度为
,则它是由多少节这样的链条构成的?
(1)尝试: 2节链条总长度是________


(2)发现:用含


(3)应用:如果某种型号自行车链条总长度为


我国是世界上严重缺水的国家之一,为了增强居民的节水意识,某自来水公司对居民用水采取以户为单位分段计费办法收费;即每月用水10吨以内(包括10吨)的用户,每吨水收费a元,每月用水超过10吨的部分,按每吨b元(b>a)收费,设一户居民月用水x(吨),应收水费y(元),y与x之间的函数关系如图所示.

(1)分段写出y与x的函数关系式.
(2)某户居民上月用水8吨,应收水费多少元?
(3)已知居民甲上月比居民乙多用水4吨,两家一共交水费46元,求他们上月分别用水多少吨?

(1)分段写出y与x的函数关系式.
(2)某户居民上月用水8吨,应收水费多少元?
(3)已知居民甲上月比居民乙多用水4吨,两家一共交水费46元,求他们上月分别用水多少吨?
某市现在有两种用电收费方法:
小明家所在的小区用的电表都换成了分时电表.
解决问题:
(1)小明家庭某月用电总量为
千瓦·时(
为常数);谷时用电
千瓦·时,峰时用电
千瓦·时,分时计价时总价为
元,普通计价时总价为
元,求
,
与用电量的函数关系式.
(2)小明家庭使用分时电表是不是一定比普通电表合算呢?
(3)下表是路皓家最近两个月用电的收据:
根据上表,请问用分时电表是否合算?
分时电表 | 普通电表 | |
峰时(8:00~21:00) | 谷时(21:00到次日8:00) | |
电价0.55元/千瓦·时 | 电价0.35元/千瓦·时 | 电价0.52元/千瓦·时 |
小明家所在的小区用的电表都换成了分时电表.
解决问题:
(1)小明家庭某月用电总量为








(2)小明家庭使用分时电表是不是一定比普通电表合算呢?
(3)下表是路皓家最近两个月用电的收据:
谷时用电(千瓦·时) | 峰时用电(千瓦·时) |
181 | 239 |
根据上表,请问用分时电表是否合算?
某精品店购进甲、乙两种小礼品,已知1件甲礼品的进价比1件乙礼品的进价多1元,购进2件甲礼品与1件乙礼品共需11元.
(1)求甲礼品的进价;
(2)经市场调查发现,若甲礼品按6元/件销售,则每天可卖40件;若按5元/件销售,则每天可卖60件.假设每天销售的件数y(件)与售价x(元/件)之间满足一次函数关系,求y与x之间的函数解析式;
(3)在(2)的条件下,当甲礼品的售价定为多少时,才能使每天销售甲礼品的利润为60元?
(1)求甲礼品的进价;
(2)经市场调查发现,若甲礼品按6元/件销售,则每天可卖40件;若按5元/件销售,则每天可卖60件.假设每天销售的件数y(件)与售价x(元/件)之间满足一次函数关系,求y与x之间的函数解析式;
(3)在(2)的条件下,当甲礼品的售价定为多少时,才能使每天销售甲礼品的利润为60元?