- 数与式
- 方程与不等式
- 函数
- + 一次函数的图象和性质
- 正比例函数的定义
- 一次函数的定义
- 一次函数的图象
- 一次函数的性质
- 一次函数与方程、不等式
- 一次函数的实际应用
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
在平面直角坐标系中,直线l1:y=kx+b(k、b为常数,且k≠0)经过A、B两点,点A在y轴上.
(1)若B点坐标为(﹣1,2).
①b= (用含有字母k的代数式表示)
②当△OAB的面积为2时,求直线l1的表达式;
(2)若B点坐标为(k﹣2b,b﹣b2),点C(﹣1,s)也在直线l1上,
①求s的值;
②如果直线l1:y=kx+b(k≠0)与直线l2:y=x交于点(x1,y1),且0<x1<2,求k的取值范围.
(1)若B点坐标为(﹣1,2).
①b= (用含有字母k的代数式表示)
②当△OAB的面积为2时,求直线l1的表达式;
(2)若B点坐标为(k﹣2b,b﹣b2),点C(﹣1,s)也在直线l1上,
①求s的值;
②如果直线l1:y=kx+b(k≠0)与直线l2:y=x交于点(x1,y1),且0<x1<2,求k的取值范围.
关于函数y=﹣2x+1,下列结论正确的是( )
A.图象必经过(﹣2,1) | B.y随x的增大而增大 |
C.图象经过第一、二、三象限 | D.当x>![]() |
已知一次函数y=(1﹣2m)x+m+1及坐标平面内一点P(2,0);
(1)若一次函数图象经过点P(2,0),求m的值;
(2)若一次函数的图象经过第一、二、三象限;
①求m的取值范围;
②若点M(a﹣1,y1),N(a,y2),在该一次函数的图象上,则y1 y2(填“>”、”=”、”<”).
(1)若一次函数图象经过点P(2,0),求m的值;
(2)若一次函数的图象经过第一、二、三象限;
①求m的取值范围;
②若点M(a﹣1,y1),N(a,y2),在该一次函数的图象上,则y1 y2(填“>”、”=”、”<”).
一次函数
(m,n为常数).
(1)若函数图象由
平移所得,且经过点(4,5),求函数解析式;
(2)若函数图象经过(-1,-2),且交y轴于负半轴,求m的取值范围.

(1)若函数图象由

(2)若函数图象经过(-1,-2),且交y轴于负半轴,求m的取值范围.