(本题满分8分)一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速
运动.快车离乙地的路程y1(km)与行驶的时间x(h)之间的函数关系,如图中线段AB所示.慢车离甲地的路
程y2(km)与行驶的时间x(h)之间的函数关系,如图中线段AC所示.根据图像进行以下研究.
解读信息:(1)甲、乙两地之间的距离为 km;
(2)线段AB的解析式为 ; 两车在慢车出发 小时后相遇;
问题解决:
(3)设快、慢车之间的距离为y(km),求y与慢车行驶时间x(h)的函数关系式,并画出函数的图像.

运动.快车离乙地的路程y1(km)与行驶的时间x(h)之间的函数关系,如图中线段AB所示.慢车离甲地的路
程y2(km)与行驶的时间x(h)之间的函数关系,如图中线段AC所示.根据图像进行以下研究.
解读信息:(1)甲、乙两地之间的距离为 km;
(2)线段AB的解析式为 ; 两车在慢车出发 小时后相遇;
问题解决:
(3)设快、慢车之间的距离为y(km),求y与慢车行驶时间x(h)的函数关系式,并画出函数的图像.

如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(4,0),点B的坐标为(0,b)(b>0),点P是直线AB上位于第二象限内的一个动点,过点P作PC⊥x轴于点C,记点P关于y轴的对称点为Q,设点P的横坐标为a.

(1)当b=3时,
①求直线AB的解析式;
②若QO=QA,求P点的坐标.
(2)是否同时存在a、b,使得△QAC是等腰直角三角形?若存在,求出所有满足条件的a、b的值;若不存在,请说明理由.

(1)当b=3时,
①求直线AB的解析式;
②若QO=QA,求P点的坐标.
(2)是否同时存在a、b,使得△QAC是等腰直角三角形?若存在,求出所有满足条件的a、b的值;若不存在,请说明理由.
如图,直线l1:y1=x和直线l2:y2=-2x+6相交于点A,直线l2与x轴交于点B,动点P沿路线O→A→B运动.
(1)求点A的坐标,并回答当x取何值时y1>y2?
(2)求△AOB的面积;
(3)当△POB的面积是△AOB的面积的一半时,求出这时点P的坐标.
(1)求点A的坐标,并回答当x取何值时y1>y2?
(2)求△AOB的面积;
(3)当△POB的面积是△AOB的面积的一半时,求出这时点P的坐标.

如图,己知函数y=
x + 4的图象与坐标轴的交点分别为点A、B,点C与点B关于x轴对称,动点P、Q分别在线段BC、AB上(点P不与点B、C重合).且∠APQ=∠ABO
(1)点A的坐标为 ,AC的长为 ;
(2)判断∠BPQ与∠CAP的大小关系,并说明理由;
(3)当△APQ为等腰三角形时,求点P的坐标.

(1)点A的坐标为 ,AC的长为 ;
(2)判断∠BPQ与∠CAP的大小关系,并说明理由;
(3)当△APQ为等腰三角形时,求点P的坐标.

已知一次函数y=kx+b的图像经过点(-2,4),且与正比例函数y=2x的图像平行.
(1) 求一次函数y=kx+b的解析式;
(2) 求一次函数y=kx+b的图像与坐标轴所围成的三角形的面积;
(3) 若A(a,y1),B(a+b,y2)为一次函数y=kx+b的图像上两个点,试比较y1与y2的大小.
(1) 求一次函数y=kx+b的解析式;
(2) 求一次函数y=kx+b的图像与坐标轴所围成的三角形的面积;
(3) 若A(a,y1),B(a+b,y2)为一次函数y=kx+b的图像上两个点,试比较y1与y2的大小.