- 数与式
- 方程与不等式
- 一元二次方程的应用——传播问题
- 一元二次方程的应用——增长率问题
- + 一元二次方程的应用——与图形有关的问题
- 一元二次方程的应用——数字问题
- 一元二次方程的应用——营销问题
- 一元二次方程的应用——动态几何问题
- 一元二次方程的应用——工程问题
- 一元二次方程的应用——行程问题
- 一元二次方程的应用——图表信息题
- 一元二次方程的应用——其他问题
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
学生会组织周末爱心义卖活动,义卖所得利润将全部捐献给希望工程,活动选在一块长
米、宽
米的矩形空地上.如图,空地被划分出
个矩形区域,分别摆放不同类别的商品,区域之间用宽度相等的小路隔开,已知每个区域的面积均为
平方米,小路的宽应为多少米?





如图,靠墙建一个面积为100平方米的仓库,并在与墙平行的一边开一道宽1米的门,现有长28米的木板,设仓库宽为x米,根据题意,下面所列方程正确的是( )


A.x(28﹣2x)=100 | B.x(28﹣2x+1)=100 |
C.x(28﹣x)=100 | D.x(28﹣x+1)=100 |
某中学有一块长30cm,宽20cm的矩形空地,该中学计划在这块空地上划出三分之二的区域种花,设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为( )


A.(30﹣x)(20﹣x)=![]() | B.(30﹣2x)(20﹣x)=![]() |
C.30x+2×20x=![]() | D.(30﹣2x)(20﹣x)=![]() |
如图,某中学准备建一个面积为300m2的矩形花园,它的一边利用图书馆的后墙,另外三边所围的栅栏的总长度是50m,求垂直于墙的边AB的长度?(后墙MN最长可利用25米)

如图,一块矩形小花园长为20米,宽为18米,主人设计了横纵方向的等宽小道路(图中阴影部分),道路之外种植花草,为了使种植花草的面积达到总面积的80%,求道路的宽度.

如图,某单位准备将院内一块长30m,宽20m的长方形花园中修两条纵向平行和一条横向弯折的小道,剩余的地方种植花草,如图,要使种植花草的面积为532m2,设小道进出口的宽度为x m,根据条件,可列出方程:____________ .

如图,利用一面长为34米的墙,用铁栅栏围成一个矩形自行车场地ABCD,在AB和BC边各有一个2米宽的小门(不用铁栅栏).设矩形ABCD的边AD长为x米,AB长为y米,矩形的面积为S平方米,且x<y.

(1)若所用铁栅栏的长为40米,求y与x的函数关系式,并直接写出自变量x的取值范围;
(2)在(1)的条件下,求S与x的函数关系式,并求出怎样围才能使矩形场地的面积为192平方米?

(1)若所用铁栅栏的长为40米,求y与x的函数关系式,并直接写出自变量x的取值范围;
(2)在(1)的条件下,求S与x的函数关系式,并求出怎样围才能使矩形场地的面积为192平方米?
如图,一农户要建一个矩形猪舍,猪舍的一边利用长为15m的住房墙,另外三边用27m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长,宽分别为多少米时,猪舍面积为96m2?

如图,要用31m长的篱笆围成一块135m2的矩形菜地,为了节省材料,菜地的一边靠墙(墙长16m),墙对面要留出2m宽的门(不用篱笆),求这块菜地的长与宽?
