- 数与式
- 方程与不等式
- 一元二次方程的相关概念
- 解一元二次方程
- + 实际问题与一元二次方程
- 一元二次方程的应用——传播问题
- 一元二次方程的应用——增长率问题
- 一元二次方程的应用——与图形有关的问题
- 一元二次方程的应用——数字问题
- 一元二次方程的应用——营销问题
- 一元二次方程的应用——动态几何问题
- 一元二次方程的应用——工程问题
- 一元二次方程的应用——行程问题
- 一元二次方程的应用——图表信息题
- 一元二次方程的应用——其他问题
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
某学校为了美化校园环境,向园林公司购买一批树苗.公司规定:若购买树苗不超过60棵,则每棵树售价120元;若购买树苗超过60棵,则每增加1棵,每棵树售价均降低0.5元,且每棵树苗的售价降到100元后,不管购买多少棵树苗,每棵售价均为100元.
(1)若该学校购买50棵树苗,求这所学校需向园林公司支付的树苗款;
(2)若该学校向园林公司支付树苗款8800元,求这所学校购买了多少棵树苗.
(1)若该学校购买50棵树苗,求这所学校需向园林公司支付的树苗款;
(2)若该学校向园林公司支付树苗款8800元,求这所学校购买了多少棵树苗.
如图,某城建部门计划在新修的城市广场的一块长方形空地上修建一个面积为1200m2的停车场,将停车场四周余下的空地修建成同样宽的通道,已知长方形空地的长为50m,宽为40m.

(1)求通道的宽度;
(2)某公司希望用80万元的承包金额承揽修建广场的工程,城建部门认为金额太高需要降价,通过两次协商,最终以51.2万元达成一致,若两次降价的百分率相同,求每次降价的百分率.

(1)求通道的宽度;
(2)某公司希望用80万元的承包金额承揽修建广场的工程,城建部门认为金额太高需要降价,通过两次协商,最终以51.2万元达成一致,若两次降价的百分率相同,求每次降价的百分率.
温州某企业安排
名工人生产甲、乙两种产品,每人每天生产
件甲或
件乙,甲产品每件可获利
元.根据市场需求和生产经验,乙产品每天产量不少于
件,当每天生产
件时,每件可获利
元,每增加
件,当天平均每件利润减少
元.设每天安排
人生产乙产品.
根据信息填表:
若每天生产甲产品可获得的利润比生产乙产品可获得的利润多
元,求每件乙产品可获得的利润.











产品种类 | 每天工人数(人) | 每天产量(件) | 每件产品可获利润(元) |
甲 | __________ | _____________ | ![]() |
乙 | ![]() | ![]() | _____________ |


某公司2017年产值2500万元,2019年产值3025万元
(1)求2017年至2019年该公司产值的年平均增长率;
(2)由(1)所得结果,预计2020年该公司产值将达多少万元?
(1)求2017年至2019年该公司产值的年平均增长率;
(2)由(1)所得结果,预计2020年该公司产值将达多少万元?
某工厂8月份的产值是50万元,10月份的产值达到72万元,设这两个月的产值平均月增长率为x,则列出方程正确的是( )
A.50(1+x2)=72 | B.72(1﹣x2)=50 |
C.72(1﹣2x)=50 | D.50(1+x)2=72 |
某中学有一块长30cm,宽20cm的矩形空地,该中学计划在这块空地上划出三分之二的区域种花,设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为( )


A.(30﹣x)(20﹣x)=![]() | B.(30﹣2x)(20﹣x)=![]() |
C.30x+2×20x=![]() | D.(30﹣2x)(20﹣x)=![]() |
某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过两次降价,且两次的降价的百分率相同,现在售价每盒16元,若设平均每次的降价百分率为x,则可列方程为_______________.
如图,某中学准备建一个面积为300m2的矩形花园,它的一边利用图书馆的后墙,另外三边所围的栅栏的总长度是50m,求垂直于墙的边AB的长度?(后墙MN最长可利用25米)

三信超市销售一种成本为每千克40元的水产品据市场分析,按每千克50元销告,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,针对这种水产品的销售情况,请解答以下问题:
(1)当销售单价定为每干克55元时,求月销售利润;
(2)要使得月销售利润达到8000元又要薄利多销,销售单价应定为多少?
(1)当销售单价定为每干克55元时,求月销售利润;
(2)要使得月销售利润达到8000元又要薄利多销,销售单价应定为多少?
Rt△ABC中,∠ACB=90°,AC=BC=6,动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动,到达点C停止运动.设运动时间为t秒

(1)如图1,过点P作PD⊥AC,交AB于D,若△PBC与△PAD的面积和是△ABC的面积的
,求t的值;
(2)点Q在射线PC上,且PQ=2AP,以线段PQ为边向上作正方形PQNM.在运动过程中,若设正方形PQNM与△ABC重叠部分的面积为8,求t的值.

(1)如图1,过点P作PD⊥AC,交AB于D,若△PBC与△PAD的面积和是△ABC的面积的

(2)点Q在射线PC上,且PQ=2AP,以线段PQ为边向上作正方形PQNM.在运动过程中,若设正方形PQNM与△ABC重叠部分的面积为8,求t的值.