- 数与式
- 方程与不等式
- 一元二次方程的相关概念
- 解一元二次方程
- + 实际问题与一元二次方程
- 一元二次方程的应用——传播问题
- 一元二次方程的应用——增长率问题
- 一元二次方程的应用——与图形有关的问题
- 一元二次方程的应用——数字问题
- 一元二次方程的应用——营销问题
- 一元二次方程的应用——动态几何问题
- 一元二次方程的应用——工程问题
- 一元二次方程的应用——行程问题
- 一元二次方程的应用——图表信息题
- 一元二次方程的应用——其他问题
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?
某市2017年对市区绿化工程投入的资金是5000万元,为争创全国文明卫生城,加大对绿化工程的投入,2019年投入的资金是7200万元,且从2017年到2019年,两年间每年投入资金的年平均增长率相同.
(1)求该市对市区绿化工程投入资金的年平均增长率;
(2)若投入资金的年平均增长率不变,那么该市在2020年预计需投入多少万元?
(1)求该市对市区绿化工程投入资金的年平均增长率;
(2)若投入资金的年平均增长率不变,那么该市在2020年预计需投入多少万元?
某商店经销的某种商品,每件成本为30元.经市场调查,当售价为每件70元时,可销售20件.假设在一定范围内,售价每降低2元,销售量平均增加4件.如果降价后商店销售这批商品获利1200元,问这种商品每件售价是多少元?
如图,要用31m长的篱笆围成一块135m2的矩形菜地,为了节省材料,菜地的一边靠墙(墙长16m),墙对面要留出2m宽的门(不用篱笆),求这块菜地的长与宽?

新华商场销售某种冰箱,每台进货价为
元,市场调研表明:当销售价为
元时,平均每天能售出
台,而当销售价每降低
元时,平均每天就能多售出
台.双“十一”期间,商场为了减少库存进行降价促销,如果在降价促销的同时还要保证这种冰箱的销售利润平均每天达到
元,这种冰箱每台应降价多少元?






有一人患了某种流感,在每轮传染中平均一个人传染x个人,在进入第二轮传染之前有两人被及时隔离治疗并治愈,若两轮传染后还有24人患流感,则x=______.
一种型号的数码相机,原来每台售价5000元,经过两次降价后,现在每台售价为3200元,假设两次降价的百分率均为
,那么可列方程___________.
