- 数与式
- 方程与不等式
- 一元二次方程的相关概念
- 解一元二次方程
- + 实际问题与一元二次方程
- 一元二次方程的应用——传播问题
- 一元二次方程的应用——增长率问题
- 一元二次方程的应用——与图形有关的问题
- 一元二次方程的应用——数字问题
- 一元二次方程的应用——营销问题
- 一元二次方程的应用——动态几何问题
- 一元二次方程的应用——工程问题
- 一元二次方程的应用——行程问题
- 一元二次方程的应用——图表信息题
- 一元二次方程的应用——其他问题
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.
(1)降价前商场每月销售该商品的利润是多少元?
(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?
(1)降价前商场每月销售该商品的利润是多少元?
(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?
某文物古迹遗址每周都吸引大量中外游客前来参观,如果游客过多,对文物古迹会产生不良影响,但同时考虑到文物的修缮和保存费用的问题,还要保证有一定的门票收入,因此遗址的管理部门采取了升、降门票价格的方法来控制参观人数.在实施过程中发现:每周参观人数y(人)与票价x(元)之间恰好构成一次函数关系:y=﹣500x+12000.在这样的情况下,如果要确保每周有40000元的门票收入,那么门票价格应定为多少元?
学生会组织周末爱心义卖活动,义卖所得利润将全部捐献给希望工程,活动选在一块长
米、宽
米的矩形空地上.如图,空地被划分出
个矩形区域,分别摆放不同类别的商品,区域之间用宽度相等的小路隔开,已知每个区域的面积均为
平方米,小路的宽应为多少米?





某地区开展“科技下乡”活动三年来,接受科技培训的人员累计达95万人次,其中第一年培训了20万人次.设每年接受科技培训的人次的平均增长率都为x,根据题意列出的方程是______________ .
某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1640张相片.如果全班有x名学生,根据题意,列出方程为________.
2018年我国新能源汽车保有量居世界前列,2016年和2018年我国新能源汽车保有量分别为51.7万辆和261万辆.设我国2016至2018年新能源汽车保有量年平均增长率为
,根据题意,可列方程为______.

如图,靠墙建一个面积为100平方米的仓库,并在与墙平行的一边开一道宽1米的门,现有长28米的木板,设仓库宽为x米,根据题意,下面所列方程正确的是( )


A.x(28﹣2x)=100 | B.x(28﹣2x+1)=100 |
C.x(28﹣x)=100 | D.x(28﹣x+1)=100 |
随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.
(1)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.
(2)2023年预计全省5G基站数量达到27万座,这一数量能否继续保持前两年的年平均增长率?请通过计算说明.
(1)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.
(2)2023年预计全省5G基站数量达到27万座,这一数量能否继续保持前两年的年平均增长率?请通过计算说明.
某工厂去年10月份机器产量为500台,12月份的机器产量达到720台,设11、12月份平均每月机器产量增长的百分率为x,则根据题意可列方程_______________