- 数与式
- 方程与不等式
- 一元二次方程的相关概念
- + 解一元二次方程
- 解一元二次方程——直接开平方法
- 实际问题与一元二次方程
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
已知:关于x的方程x2+2x+k2﹣1=0.
(1)试说明无论取何值时,方程总有两个不相等的实数根.
(2)如果方程有一个根为3,试求2k2+12k+2019的值.
(1)试说明无论取何值时,方程总有两个不相等的实数根.
(2)如果方程有一个根为3,试求2k2+12k+2019的值.
已知关于x的方程ax2+(3﹣2a)x+a﹣3=0.
(1)求证:无论a为何实数,方程总有实数根.
(2)如果方程有两个实数根x1,x2,当|x1﹣x2|=
时,求出a的值.
(1)求证:无论a为何实数,方程总有实数根.
(2)如果方程有两个实数根x1,x2,当|x1﹣x2|=

小明同学解一元二次方程x2﹣6x﹣1=0的过程如图所示.
解:x2﹣6x=1 …①
x2﹣6x+9=1 …②
(x﹣3)2=1 …③
x﹣3=±1 …④
x1=4,x2=2 …⑤
(1)小明解方程的方法是 .
(A)直接开平方法(B)因式分解法(C)配方法(D)公式法
他的求解过程从第 步开始出现错误.
(2)解这个方程.
解:x2﹣6x=1 …①
x2﹣6x+9=1 …②
(x﹣3)2=1 …③
x﹣3=±1 …④
x1=4,x2=2 …⑤
(1)小明解方程的方法是 .
(A)直接开平方法(B)因式分解法(C)配方法(D)公式法
他的求解过程从第 步开始出现错误.
(2)解这个方程.