- 数与式
- 方程与不等式
- 从算式到方程
- 解一元一次方程
- + 实际问题与一元一次方程
- 一元一次方程的应用——配套问题
- 一元一次方程的应用——工程问题
- 一元一次方程的应用——销售盈亏
- 一元一次方程的应用——比赛积分
- 一元一次方程的应用——方案选择
- 一元一次方程的应用——数字问题
- 一元一次方程的应用——几何问题
- 一元一次方程的应用——和差倍分问题
- 一元一次方程的应用——电费和水费问题
- 一元一次方程的应用——行程问题
- 一元一次方程的应用——比例分配
- 一元一次方程的应用——日历问题
- 一元一次方程的应用——其他问题
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
在“五一”黄金周期间,小明、小亮等同学随家人一同到江郎山游玩,看见门口有如下票价提示:“成人:35元/张;学生:按成人票5折优惠;团体票(16人以上含16人):按成人票价六折优惠”。
在购买门票时,小明与他爸爸有如下对话,爸爸:“大人门票每张35元,学生门票对折优惠,我们共有12人,共需350元”。小明:“爸爸,等一下,让我算一算,换一种方式买票是不是可以更省钱”。
问题:(1)小明他们一共去了几个成人,几个学生?
(2)请你帮小明算一算,用哪种方式买票更省钱?说明理由
在购买门票时,小明与他爸爸有如下对话,爸爸:“大人门票每张35元,学生门票对折优惠,我们共有12人,共需350元”。小明:“爸爸,等一下,让我算一算,换一种方式买票是不是可以更省钱”。
问题:(1)小明他们一共去了几个成人,几个学生?
(2)请你帮小明算一算,用哪种方式买票更省钱?说明理由
某商店选用A、B两种价格分别是每千克28元和每千克20元的糖果混合成杂拌糖果后出售,为使这种杂拌糖果的售价是每千克25元,要配制这种杂拌糖果100千克,问要用这两种糖果各多少千克?
某项工作,甲单独做要4天完成,乙单独做要6天完成,若甲先做1天后,然后甲、乙合作完成此项工作,若设甲一共做了x天,所列方程是( ).
A.![]() | B.![]() | C.![]() | D.![]() |
古时候,传说捷克的公主柳布莎曾出过这样一道有趣的题:“一只篮子中有若干李子,取它的一半又一个给第一个人,再取余下的一半又两个给第二个人,又取最后所余的一半又三个给第三个人,那么篮内的李子就没有剩余,篮中原有李子多少个?”
百羊问题 甲赶群羊逐草茂,乙牵肥羊一只随其后,戏问甲及一百否?甲云所说无差谬.若得原有一群凑,再添一半小一半,得你一只来方凑,玄机奥妙谁猜透?请列出方程.(说明:“小一半”是指一半的一半,即四分之一)
下表是中国电信两种“
套餐”计费方式.(月基本费固定收,主叫不超过主叫时间,流量不超上网流量不再收取额外费用费,主叫超时和上网超流量部分加收超时费和超流量费)
(1)6月小王主叫通话时间220分钟,上网流量800M
若他按套餐2计费需129元,主叫通话时间为240分钟,则他上网使用了 MB流量;
(2)若上网流量为540MB,是否存在某主叫通话时间
(分钟),按套餐1和套餐2的计费相等?若存在,请求出
的值;若不存在,请说明理由.

| 月基本费/元 | 主叫通话/分钟 | 上网流量/MB | 接听 | 主叫超时(元/分钟) | 超出流量(元/MB) |
套餐1 | 49 | 200 | 500 | 免费 | 0.20 | 0.3 |
套餐2 | 69 | 250 | 600 | 免费 | 0.15 | 0.2 |
(1)6月小王主叫通话时间220分钟,上网流量800M
A.按套餐1计费需 元,按套餐2计费需 元; |
(2)若上网流量为540MB,是否存在某主叫通话时间


某公司需要粉刷一些相同的房间,经调查3名师傅一天粉刷8个房间,还剩40m2刷不完;5名徒弟一天可以粉刷9个房间;每名师傅比徒弟一天多刷30m2的墙面。
(1)求每个房间需要粉刷的面积;
(2)该公司现有36个这样的房间需要粉刷,若只聘请1名师傅和2名徒弟一起粉刷,需要几天完成?
(3)若来该公司应聘的有3名师傅和10名徒弟,每名师傅和每名徒弟每天的工资分别是240元和200元,该公司要求这36个房间要在2天内粉刷完成,问人工费最低是多少?
(1)求每个房间需要粉刷的面积;
(2)该公司现有36个这样的房间需要粉刷,若只聘请1名师傅和2名徒弟一起粉刷,需要几天完成?
(3)若来该公司应聘的有3名师傅和10名徒弟,每名师傅和每名徒弟每天的工资分别是240元和200元,该公司要求这36个房间要在2天内粉刷完成,问人工费最低是多少?