- 数与式
- 方程与不等式
- 从算式到方程
- 解一元一次方程
- + 实际问题与一元一次方程
- 一元一次方程的应用——配套问题
- 一元一次方程的应用——工程问题
- 一元一次方程的应用——销售盈亏
- 一元一次方程的应用——比赛积分
- 一元一次方程的应用——方案选择
- 一元一次方程的应用——数字问题
- 一元一次方程的应用——几何问题
- 一元一次方程的应用——和差倍分问题
- 一元一次方程的应用——电费和水费问题
- 一元一次方程的应用——行程问题
- 一元一次方程的应用——比例分配
- 一元一次方程的应用——日历问题
- 一元一次方程的应用——其他问题
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
元旦期间,丹东新一百商城销售
两种商品,
种商品每件进价
元,售价
元;
种商品每件售价
元,利润率为
.
(1)每件
种商品利润率为 ,
种商品每件进价为 元;
(2)由于热销,商城决定再购进上面的两种商品共
件(每件商品的进价不变),采购部预算共支出
元,财务部算了一下,说:“如果你用这些钱买两种商品,那么账肯定算错了!”请你用学过的方程知识解释财务部为什么会这样说?







(1)每件


(2)由于热销,商城决定再购进上面的两种商品共


有一玻璃密封器皿如图1,测得其地面直径为
厘米,高
厘米,内装蓝色溶液若干.若如图2放置时,测得液面高
厘米;若如图3放置时,测得液面高
厘米;则该玻璃密封器皿总容量为()立方厘米.(结果保留)






A.![]() | B.![]() | C.![]() | D.![]() |
某工厂每天需要生产
个零件才能在规定的时间内完成生产一批零件的任务,实际该工厂每天比计划多生产了
个零件,结果比规定的时间提前
天完成.若设该工厂要完成的零件任务为
个,则可列方程为__________.




2019年7月9日,北京市滴滴快车调整了价格,规定车费由“总里程费+总时长费”两部分构成,具体收费标准如下表:(注:如果车费不足起步价,则按起步价收费.)
(1)小明07:10乘快车上学,行驶里程6千米,时长10分钟,应付车费 元;
(2)小芳17:20乘快车回家,行驶里程1千米,时长15分钟,应付车费 元;
(3)小华晚自习后乘快车回家,20:45在学校上车.由于道路施工,车辆行驶缓慢,15分钟后选择另外道路,改道后速度是改道前速度的3倍,10分钟后到家,共付了车费37.4元,问从学校到小华家快车行驶了多少千米?
时间段 | 里程费(元/千米) | 时长费(元/分钟) | 起步价(元) |
06:00—10:00 | 1.80 | 0.80 | 14.00 |
10:00—17:00 | 1.45 | 0.40 | 13.00 |
17:00—21:00 | 1.50 | 0.80 | 14.00 |
21:00—06:00 | 2.15 | 0.80 | 14.00 |
(1)小明07:10乘快车上学,行驶里程6千米,时长10分钟,应付车费 元;
(2)小芳17:20乘快车回家,行驶里程1千米,时长15分钟,应付车费 元;
(3)小华晚自习后乘快车回家,20:45在学校上车.由于道路施工,车辆行驶缓慢,15分钟后选择另外道路,改道后速度是改道前速度的3倍,10分钟后到家,共付了车费37.4元,问从学校到小华家快车行驶了多少千米?
一项工程,甲队单独施工需要15天完成,乙队单独施工需要9天完成.现在由甲队先工作3天,剩下的由甲、乙两队合作,还需要几天才能完成任务?
如图,表中给出的是某月的月历,任意选取“U”型框中的7个数(如阴影部分所示),请你运用所学的数学知识来研究,发现这7个数的和不可能的是( )


A.70 | B.78 | C.84 | D.![]() |
我国古代《洛书》古称龟书,传说有神龟出于洛水,其甲壳上记载着一个世界上最古老的的幻方,如图所示,若将1~9这九个数字填入这个3×3的幻方中,恰好能使三行、三列、对角的三个数字之和分别相等.根据题意,要求幻方中的m则可列方程为___________________,进而可求得m=_____,n=_____.

元旦节日期间,晓红百货商场为了促销,对某种商品按标价的8折出售,仍获利160元,若这种商品的标价为2200元,那么它的成本价为( )
A.1600元 | B.1800元 | C.2000元 | D.2100元 |
某公司门口有一个长为
的长方形电子显示屏,如图所示,公司的有关活动都会在电子显示屏播出,由于各次活动的名称不同,字数也就不等,为了制作及显示时方便美观,负责播出的员工对有关数据作出了如下规定:边空宽:字宽:字距
,请用列方程的方法解决下列问题:某次活动的字数为
个,求字距是多少?



