- 数与式
- 无理数
- 实数的性质
- + 实数的运算
- 实数的混合运算
- 程序设计与实数运算
- 新定义下的实数运算
- 实数运算的实际应用
- 与实数运算相关的规律题
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
设
表示大于
的最小整数,如
,
,则下列结论中正确的是__________.(填写所有正确结论的序号)①
;②
的最小值是
;③
的最大值是
;④存在实数
,使
成立.

















(1)试比较(-3)※4与4※(-3)的大小.
(2)若1※x=-3,求x的值.
计算与化简
(1)22+(﹣4)+(﹣2)+4
(2)﹣52÷5+20180﹣|﹣4|
(3)5a+b﹣6a
(4)3(2x﹣7)﹣(4x﹣5)
(1)22+(﹣4)+(﹣2)+4
(2)﹣52÷5+20180﹣|﹣4|
(3)5a+b﹣6a
(4)3(2x﹣7)﹣(4x﹣5)
阅读材料,解答问题:如果一个四位自然数,十位数字是千位数字的2倍与百位数字的差,个位数字是千位数字的2倍与百位数字的和,则我们称这个四位数“依赖数”,例如,自然数2135,其中3=2×2﹣1,5=2×2+1,所以2135是“依赖数”.
(1)请直接写出最小的四位依赖数;
(2)若四位依赖数的后三位表示的数减去百位数字的3倍得到的结果除以7余3,这样的数叫做“特色数”,求所有特色数.
(3)已知一个大于1的正整数m可以分解成m=pq+n4的形式(p≤q,n≤b,p,q,n均为正整数),在m的所有表示结果中,当nq﹣np取得最小时,称“m=pq+n4”是m的“最小分解”,此时规定:F(m)=
,例:20=1×4+24=2×2+24=1×19+14,因为1×19﹣1×1>2×4﹣2×1>2×2﹣2×2,所以F(20)=
=1,求所有“特色数”的F(m)的最大值.
(1)请直接写出最小的四位依赖数;
(2)若四位依赖数的后三位表示的数减去百位数字的3倍得到的结果除以7余3,这样的数叫做“特色数”,求所有特色数.
(3)已知一个大于1的正整数m可以分解成m=pq+n4的形式(p≤q,n≤b,p,q,n均为正整数),在m的所有表示结果中,当nq﹣np取得最小时,称“m=pq+n4”是m的“最小分解”,此时规定:F(m)=

