- 数与式
- 正数和负数
- 有理数的初步认识
- + 数轴
- 数轴的三要素及其画法
- 用数轴上的点表示有理数
- 利用数轴比较有理数的大小
- 数轴上两点之间的距离
- 数轴上的动点问题
- 根据点在数轴的位置判断式子的正负
- 相反数
- 绝对值
- 有理数大小比较
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
在数轴上,点A,B分别表示数a,b,则线段AB的长表示为|a-b|,例如:在数轴上,点A表示5.点B表示2,则线段AB的长表示为|5-2|=3:回答下列问题:
(1)数轴上表示1和-3的两点之间的距离是______:
(2)若AB=8,|b|=3|a|,求a,b的值.
(3)若数轴上的任意一点P表示的数是x,且|x−a|+|x−b|的最小值为4,若a=3,求b的值
(1)数轴上表示1和-3的两点之间的距离是______:
(2)若AB=8,|b|=3|a|,求a,b的值.
(3)若数轴上的任意一点P表示的数是x,且|x−a|+|x−b|的最小值为4,若a=3,求b的值
请大家阅读下面两段材料,并解答问题:
材料1:我们知道在数轴上表示4和1的两点之间的距离为3(如图1),而|4﹣1|=3,所以在数轴上表示4和1的两点之间的距离为|4﹣1|.
材料2:再如在数轴上表示4和﹣2的两点之间的距离为6(如图2)而|4﹣(﹣2)|=6,所以数轴上表示数4和﹣2的两点之间的距离|4﹣(﹣2)|.
(1)(如图3)根据上述规律,我们可以得出结论:在数轴上表示数a和数b两点之间的距离等于 .
(2)试一试,求在数轴上表示的数5
与﹣4
的两点之间的距离为 .
(3)已知数轴上表示数a的点M与表示数﹣1的点之间的距离为3,表示数b的点N与表示数2的点之间的距离为4,求M,N两点之间的距离.
材料1:我们知道在数轴上表示4和1的两点之间的距离为3(如图1),而|4﹣1|=3,所以在数轴上表示4和1的两点之间的距离为|4﹣1|.
材料2:再如在数轴上表示4和﹣2的两点之间的距离为6(如图2)而|4﹣(﹣2)|=6,所以数轴上表示数4和﹣2的两点之间的距离|4﹣(﹣2)|.
(1)(如图3)根据上述规律,我们可以得出结论:在数轴上表示数a和数b两点之间的距离等于 .
(2)试一试,求在数轴上表示的数5


(3)已知数轴上表示数a的点M与表示数﹣1的点之间的距离为3,表示数b的点N与表示数2的点之间的距离为4,求M,N两点之间的距离.

如图,点A表示的数是﹣4.
(1)在数轴上表示出原点O;
(2)指出点B所表示的数;
(3)在数轴上找一点C,它与点B的距离为2个单位长度,那么点C表示什么数?
(1)在数轴上表示出原点O;
(2)指出点B所表示的数;
(3)在数轴上找一点C,它与点B的距离为2个单位长度,那么点C表示什么数?

若有理数a,b在数轴上对应的点如图所示,则a、b、-a、-b的大小关系是( )


A.a<b<-a<-b | B.a<-b<b<-a | C.-b<a<b<-a | D.-a<-b<a<b |
一条东西走向的商业街上,依次有书店(记为A)、冷饮店(记为B)、鞋店(记为C),冷饮店位于鞋店西边50m处,鞋店位于书店东边60m处,王平先去书店,然后沿着这条街向东走了30m至D处,接着向西走50m到达E处.
(1)以A为原点、向东为正方向画数轴,在数轴上表示出上述A,B,C,D,E的位置;
(2)若在这条街上建一家超市,使超市与鞋店C分居E点两侧,且到E点的距离相等,问超市在冷饮店的什么方向?距离多远?
(1)以A为原点、向东为正方向画数轴,在数轴上表示出上述A,B,C,D,E的位置;
(2)若在这条街上建一家超市,使超市与鞋店C分居E点两侧,且到E点的距离相等,问超市在冷饮店的什么方向?距离多远?
如图,数轴上A、B两点分别对应有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a-b|,利用数形结合思想回答下列问题:
(1)数轴上表示2和10两点之间的距离是____,数轴上表示2和-10两点之间的距离是
____;
(2)数轴上,x和-2两点之间的距离是|x+2|_____;
(3)若x表示一个有理数,则|x-1+|x+2|有最小值吗?若有,请求出最小值,若没有,写出理由.

(1)数轴上表示2和10两点之间的距离是____,数轴上表示2和-10两点之间的距离是
____;
(2)数轴上,x和-2两点之间的距离是|x+2|_____;
(3)若x表示一个有理数,则|x-1+|x+2|有最小值吗?若有,请求出最小值,若没有,写出理由.