- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 加法原理与乘法原理
- + 排列
- 排列与排列数公式
- 排列应用题
- 组合
- 二项式定理
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
现有4名男生、3名女生站成一排照相.
(1)两女生要在两端,有多少种不同的站法?
(2)两名女生不相邻,有多少种不同的站法?
(3)女生甲要在女生乙的右方(可以不相邻),有多少种不同的站法?
(4)女生甲不在左端,女生乙不在右端,有多少种不同的站法?
(1)两女生要在两端,有多少种不同的站法?
(2)两名女生不相邻,有多少种不同的站法?
(3)女生甲要在女生乙的右方(可以不相邻),有多少种不同的站法?
(4)女生甲不在左端,女生乙不在右端,有多少种不同的站法?
现有4名男生、3名女生站成一排照相.(结果用数字表示)
(1)女生甲不在排头,女生乙不在排尾,有多少种不同的站法?
(2)女生不相邻,有多少种不同的站法?
(3)女生甲要在女生乙的右方,有多少种不同的站法?
(1)女生甲不在排头,女生乙不在排尾,有多少种不同的站法?
(2)女生不相邻,有多少种不同的站法?
(3)女生甲要在女生乙的右方,有多少种不同的站法?
有3本不同的语文书和3本不同的数学书,求满足下列条件的方法总数(用数字作答)
(1)6本排成一排;
(2)6本排成一排,其中3本数学书必须相邻;
(3)6本排成一排,其中语文书互不相邻.
(1)6本排成一排;
(2)6本排成一排,其中3本数学书必须相邻;
(3)6本排成一排,其中语文书互不相邻.
现有


(1) 两女生要在两端,有多少种不同的站法?
(2)两名女生不相邻,有多少种不同的站法?
(3)女生甲不在左端,女生乙不在右端,有多少种不同的站法?
(4)女生甲要在女生乙的右方(可以不相邻),有多少种不同的站法?
.将A、B、C、D四个球放入编号为1,2,3的三个盒子中,每个盒子中至少放一个球,且A、B两个球不能放在同一盒子中,则不同的放法有
A.15 B.18 C.30 D.36
A.15 B.18 C.30 D.36
四名男生三名女生排成一排,若三名女生中有两名相邻,但三名女生不能连排,则不同的排法数有( )种
A.3600 | B.3200 | C.3080 | D.2880 |