- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- + 计数原理
- 加法原理与乘法原理
- 排列
- 组合
- 二项式定理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知参加某项活动的六名成员排成一排合影留念,且甲乙两人均在丙领导人的同侧,则不同的排法共有( )
A.240种 | B.360种 | C.480种 | D.600种 |
某科室派出4名调研员到3个学校,调研该校高三复习备考近况,要求每个学校至少一名,则不同的分配方案种数为________(用数字作答)
从
个不同小球(其中
个白球,1个黑球)中取出
个球共有
种不同取法,还可换一个角度考虑:若取出
个球全是白球,则有
种不同取法,若取出
个球中含有黑球,则有
种不同取法,从而共有
种不同取法.因此,可以得到组合恒等式:
.请你运用类比推理的方法,可以得到排列恒等式:
____.














某班准备从甲、乙、丙等6人中选出4人在班会上发言介绍学习经验,要求甲、乙、丙三人中至少有两人参加,那么不同的发言顺序有( )
A.18种 | B.12种 | C.432种 | D.288种 |
在某班举行的“庆五一”联欢晚会开幕前已排好有8个不同节目的节目单,如果保持原来的节目相对顺序不变,临时再插进去
三个不同的新节目,且插进的三个新节目按
顺序出场,那么共有__________种不同的插入方法(用数字作答).

