- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 圆的方程
- 直线与圆的位置关系
- + 圆与圆的位置关系
- 圆与圆的位置关系
- 圆的公共弦
- 圆的公切线
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设抛物线C1:y2=4x的准线与x轴交于点F1,焦点为F2;以F1,F2为焦点,离心率为
的椭圆记作C2

(1)求椭圆的标准方程;
(2)直线L经过椭圆C2的右焦点F2,与抛物线C1交于A1,A2两点,与椭圆C2交于B1,B2两点.当以B1B2为直径的圆经过F1时,求|A1A2|长.
(3)若M是椭圆上的动点,以M为圆心,MF2为半径作圆
,是否存在定圆
,使得
与
恒相切?若存在,求出
的方程,若不存在,请说明理由.


(1)求椭圆的标准方程;
(2)直线L经过椭圆C2的右焦点F2,与抛物线C1交于A1,A2两点,与椭圆C2交于B1,B2两点.当以B1B2为直径的圆经过F1时,求|A1A2|长.
(3)若M是椭圆上的动点,以M为圆心,MF2为半径作圆




