- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 一元二次不等式的概念及辨析
- + 解不含参数的一元二次不等式
- 解含有参数的一元二次不等式
- 由一元二次不等式的解确定参数
- 一元二次方程根的分布问题
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设抛物线C:y2=2px(p>0)的焦点为F,准线为l.已知以F为圆心,半径为4的圆与l交于A,B两点,E是该圆与抛物线C的一个交点,∠EAB=90°.
(1)求p的值;
(2)已知点P的纵坐标为-1且在抛物线C上,Q,R是抛物线C上异于点P的另两点,且满足直线PQ和直线PR的斜率之和为-1,试问直线QR是否经过一定点,若是,求出定点的坐标;否则,请说明理由.
(1)求p的值;
(2)已知点P的纵坐标为-1且在抛物线C上,Q,R是抛物线C上异于点P的另两点,且满足直线PQ和直线PR的斜率之和为-1,试问直线QR是否经过一定点,若是,求出定点的坐标;否则,请说明理由.