- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 平面向量的实际背景及基本概念
- 平面向量的线性运算
- + 平面向量的基本定理及坐标表示
- 平面向量基本定理
- 平面向量的正交分解与坐标表示
- 平面向量线性运算的坐标表示
- 平面向量共线的坐标表示
- 平面向量的数量积
- 平面向量的应用举例
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知数列{an},{bn},Sn为数列{an}的前n项和,向量
=(1,bn),
=(an-1,Sn),
//
.
(1)若bn=2,求数列{an}通项公式;
(2)若
,
=0.
①证明:数列{an}为等差数列;
②设数列{cn}满足
,问是否存在正整数l,m(l<m,且l≠2,m≠2),使得
成等比数列,若存在,求出l、m的值;若不存在,请说明理由.




(1)若bn=2,求数列{an}通项公式;
(2)若


①证明:数列{an}为等差数列;
②设数列{cn}满足

