- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 正弦定理及辨析
- + 正弦定理解三角形
- 正弦定理判定三角形解的个数
- 正弦定理求外接圆半径
- 正弦定理边角互化的应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在
ABC中,内角A,B,C所对的边分别为a,b,c.已知b+c=2acos

A. (Ⅰ)证明:A=2B; (Ⅱ)若cos B= ![]() |
已知函数f(x)=
sin2x-
-
,x∈R.
(1)求函数f(x)的最小值和最小正周期;
(2)设△ABC的内角A、B、C的对边分别为a、b、c,且c=
,f(C)=0,若向量m=(1,sinA)与向量n=(2,sinB)共线,求a,b的值.



(1)求函数f(x)的最小值和最小正周期;
(2)设△ABC的内角A、B、C的对边分别为a、b、c,且c=
