- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 正弦定理及辨析
- + 正弦定理解三角形
- 正弦定理判定三角形解的个数
- 正弦定理求外接圆半径
- 正弦定理边角互化的应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
我国南宋时期著名的数学家秦九韶在其著作《数书九章》中,提出了已知三角形三边长求三角形的面积的公式,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实.一为从隔,开平方得积.”若把以上这段文字写成公式,即
,其中a、b、c分别为
内角A、B、C的对边.若
,
,则
面积S的最大值为





A.![]() | B.![]() | C.![]() | D.![]() |