刷题首页
题库
高中数学
题干
我国南宋时期著名的数学家秦九韶在其著作《数书九章》中,提出了已知三角形三边长求三角形的面积的公式,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实.一为从隔,开平方得积.”若把以上这段文字写成公式,即
,其中
a
、
b
、
c
分别为
内角
A
、
B
、
C
的对边.若
,
,则
面积
S
的最大值为
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2019-04-03 04:02:57
答案(点此获取答案解析)
同类题1
在△ABC中,BC边上的中线AD长为3,且BD=2,
sin
B=
.
(Ⅰ)求
sin
∠BAD的值;
(Ⅱ)求
AC
的长.
同类题2
在
中,角
所对的边分别为
,若
,则
的平分线
的
长等于( )
A.
B.3
C.
D.
同类题3
在
中,
,
,
,则
B
等于( )
A.
或
B.
C.
D.以上答案都不对
同类题4
已知
的内角
A,B,C
所对的边分别为
a
,
b
,
c
,且
.
(1)若
,求
的值;
(2)若
,求
b
,
c
的值.
同类题5
已知角
是
的内角,
分别是其所对边长,向量
,
,
(1)求角A的大小;
(2)若
,求
的长 .
相关知识点
三角函数与解三角形
解三角形
正弦定理和余弦定理
正弦定理
正弦定理解三角形