- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 两角和与差的三角函数
- 二倍角公式
- + 三角恒等变换
- 降幂公式
- 辅助角公式
- 半角公式
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:
①sin213°+cos217°﹣sin13°cos17°;
②sin215°+cos215°﹣sin15°cos15°;
③sin218°+cos212°﹣sin18°cos12°;
④sin2(﹣18°)+cos248°﹣sin(﹣18°)cos48°
⑤sin2(﹣25°)+cos255°﹣sin(﹣25°)cos55°
(Ⅰ)试从上述五个式子中选择一个,求出这个常数;
(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为一三角恒等式sin2α+cos2(30°﹣α)﹣sinαcos(30°﹣α)= ,并证明你的结论.
(参考公式:sin(α±β)=sinαcosβ±cosαsinβ,cos(α±β)=cosαcosβ∓sinαsinβsin2α=2sinαcosα,cos2α=cos2α﹣sin2α=2cos2α﹣1=1﹣2sin2α)
①sin213°+cos217°﹣sin13°cos17°;
②sin215°+cos215°﹣sin15°cos15°;
③sin218°+cos212°﹣sin18°cos12°;
④sin2(﹣18°)+cos248°﹣sin(﹣18°)cos48°
⑤sin2(﹣25°)+cos255°﹣sin(﹣25°)cos55°
(Ⅰ)试从上述五个式子中选择一个,求出这个常数;
(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为一三角恒等式sin2α+cos2(30°﹣α)﹣sinαcos(30°﹣α)= ,并证明你的结论.
(参考公式:sin(α±β)=sinαcosβ±cosαsinβ,cos(α±β)=cosαcosβ∓sinαsinβsin2α=2sinαcosα,cos2α=cos2α﹣sin2α=2cos2α﹣1=1﹣2sin2α)