- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- + 三角函数
- 任意角和弧度制
- 任意角的三角函数
- 同角三角函数的基本关系
- 三角函数的诱导公式
- 三角函数的图象与性质
- 函数y=Asin(ωx+φ)的图象变换
- 三角函数的应用
- 三角恒等变换
- 解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
在区间
上的最大值为2.
(1)求函数
的解析式,并求它的对称中心的坐标;
(2)先将函数
保持横坐标不变,纵坐标变为原来的
(
)倍,再将图象向左平移
(
)个单位,得到的函数
为偶函数.若对任意的
,总存在
,使得
成立,求实数
的取值范围.


(1)求函数

(2)先将函数










关于函数
有下列四个结论:
①
是偶函数 ②
在区间
单调递减
③
在区间
上的值域为
④ 当
时,
恒成立
其中正确结论的编号是____________(填入所有正确结论的序号).

①



③





其中正确结论的编号是____________(填入所有正确结论的序号).