如图,半径为4m的水轮绕着圆心O逆时针做匀速圆周运动,每分钟转动4圈,水轮圆心O距离水面2m,如果当水轮上点P从离开水面的时刻(P0)开始计算时间.

(1)将点P距离水面的高度y(m)与时间t(s)满足的函数关系;
(2)求点P第一次到达最高点需要的时间.
当前题号:1 | 题型:解答题 | 难度:0.99
关于函数,有下列命题:其中正确的是__________.
①函数的表达式可改写为
②函数是以为最小正周期的周期函数;
③函数在区间上的最小值为
④函数的图象关于点对称.
当前题号:2 | 题型:填空题 | 难度:0.99
把函数y=sin x(x∈R)的图象上所有点向左平行移动个单位长度,再把所得图象上所有点的横坐标缩短到原来的倍(纵坐标不变),得到的图象所表示的函数是(  ).
A.B. 
C.D.
当前题号:3 | 题型:单选题 | 难度:0.99
函数的值域是___________.
当前题号:4 | 题型:填空题 | 难度:0.99
已知曲线,若想要由得到,下列说法正确的是(   )
A.把曲线上各点的横坐标伸长到原来的倍(纵坐标不变),再向左平移个单位
B.把曲线上各点的横坐标伸长到原来的倍(纵坐标不变),再向右平移个单位
C.把曲线上各点的横坐标缩短为原来的(纵坐标不变),再向左平移个单位
D.把曲线上各点的横坐标缩短为原来的(纵坐标不变),再向右平移个单位
当前题号:5 | 题型:单选题 | 难度:0.99
已知abc分别为内角的对边,
(1)求角C;
(2)求的取值范围.
当前题号:6 | 题型:解答题 | 难度:0.99
某港口某天0时至24时的水深(米)随时间(时)变化曲线近似满足如下函数模型).若该港口在该天0时至24时内,有且只有3个时刻水深为3米,则该港口该天水最深的时刻不可能为(   )
A.16时B.17时C.18时D.19时
当前题号:7 | 题型:单选题 | 难度:0.99
已知点在角终边上,且,则______.
当前题号:8 | 题型:填空题 | 难度:0.99
已知,则sin2α=(   )
A.0或1B.0或-1C.0D.1
当前题号:9 | 题型:单选题 | 难度:0.99
若sinα<0 且tanα>0,则α是第 _________ 象限角.
当前题号:10 | 题型:填空题 | 难度:0.99