1.单选题- (共4题)
2.
已知命题:“若
,
为异面直线,平面
过直线
且与直线
平行,则直线
与平面
的距离等于异面直线
,
之间的距离”为真命题.根据上述命题,若
,
为异面直线,且它们之间的距离为
,则空间中与
,
均异面且距离也均为
的直线
的条数为( )
















A.0条 | B.1条 | C.多于1条,但为有限条 | D.无数多条 |
2.填空题- (共12题)
5.
现介绍祖暅原理求球体体积公式的做法:可构造一个底面半径和高都与球半径相等的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,用这样一个几何体与半球应用祖暅原理(图
),即可求得球的体积公式.请研究和理解球的体积公式求法的基础上,解答以下问题:已知椭圆的标准方程为
,将此椭圆绕
轴旋转一周后,得一橄榄状的几何体(图
),其体积等于______ .





3.解答题- (共5题)
19.
如图,在直角梯形
,
,
,
,点
是
的中点,现沿
将平面
折起,设
.

(1)当
为直角时,求直线
与平面
所成角的大小;
(2)当
为多少时,三棱锥
的体积为
;
(3)在(2)的条件下,求此时二面角
的大小.










(1)当



(2)当



(3)在(2)的条件下,求此时二面角

20.
和平面解析几何的观点相同,在空间中,空间平面和曲面可以看作是适合某种条件的动点的轨迹,在空间直角坐标系
中,空间平面和曲面的方程是一个三原方程
.
(1)类比平面解析几何中直线的方程,写出①过点
,法向量为
的平面的点法式方程;②平面的一般方程;③在
,
,
轴上的截距分别为
,
,
的平面的截距式方程.(不需要说明理由)
(2)设
、
为空间中的两个定点,
,我们将曲面
定义为满足
的动点
的轨迹,试建立一个适当的空间直角坐标系
,求曲面
的方程.
(3)对(2)中的曲面
,指出和证明曲面
的对称性,并画出曲面
的直观图.


(1)类比平面解析几何中直线的方程,写出①过点








(2)设








(3)对(2)中的曲面



试卷分析
-
【1】题量占比
单选题:(4道)
填空题:(12道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:21