1.填空题- (共11题)
2.解答题- (共9题)
12.
已知函数
(
,
是自然对数的底数).
(1)若函数
在点
处的切线方程为
,试确定函数
的单调区间;
(2)①当
,
时,若对于任意
,都有
恒成立,求实数
的最小值;②当
时,设函数
,是否存在实数
,使得
?若存在,求出
的取值范围;若不存在,说明理由.



(1)若函数




(2)①当










13.
江心洲有一块如图所示的江边,
,
为岸边,岸边形成
角,现拟在此江边用围网建一个江水养殖场,有两个方案:方案l:在岸边
上取两点
,用长度为
的围网依托岸边线
围成三角形
(
,
两边为围网);方案2:在岸边
,
上分别取点
,用长度为
的围网
依托岸边围成三角形
.请分别计算
,
面积的最大值,并比较哪个方案好.



















15.
对于无穷数列
,
,若
,
,则称
是
的“收缩数列”.其中
,
分别表示
中的最大数和最小数.已知
为无穷数列,其前
项和为
,数列
是
的“收缩数列”.
(1)若
,求
的前
项和;
(2)证明:
的“收缩数列”仍是
;
(3)若
且
,
,求所有满足该条件的
.














(1)若



(2)证明:


(3)若




17.
在平面直角坐标系
中,圆
的方程为
,且圆
与
轴交于
两点,设直线
的方程为
.
(1)当直线
与圆
相切时,求直线
的方程;
(2)已知直线
与圆
相交于
两点.(i)
,求直线
的方程;(ii)直线
与直线
相交于点
,直线
,直线
,直线
的斜率分别为
,
,
,是否存在常数
,使得
恒成立?若存在,求出
的值;若不存在,说明理由.








(1)当直线



(2)已知直线

















18.
某商场进行抽奖活动.已知一抽奖箱中放有8只除颜色外,其它完全相同的彩球,其中仅有5只彩球是红色.现从抽奖箱中一个一个地拿出彩球,共取三次,拿到红色球的个数记为
.
(1)若取球过程是无放回的,求事件“
”的概率;
(2)若取球过程是有放回的,求
的概率分布列及数学期望
.

(1)若取球过程是无放回的,求事件“

(2)若取球过程是有放回的,求


试卷分析
-
【1】题量占比
填空题:(11道)
解答题:(9道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:20