1.单选题- (共11题)
9.
把正整数1,2,3,4,5,6,……按某种规律填入下表,
按照这种规律继续填写,则2012出现在( )
| 2 | | | 6 | | | 10 | | | 14 | |
1 | | 4 | 5 | | 8 | 9 | | 12 | 13 | | … |
| 3 | | | 7 | | | 11 | | | 15 | |
按照这种规律继续填写,则2012出现在( )
A.第3行,第1506列 | B.第3行,第1508列 |
C.第2行,第1509列 | D.第2行,第1510列 |
10.
已知12=1,12-22=-3,12-22+32=6,12-22+32-42=-10,…,照此规律,则12-22+32-42+…+(-1)10×92的值为( )
A.-36 | B.36 | C.-45 | D.45 |
2.选择题- (共2题)
3.填空题- (共3题)
4.解答题- (共5题)
17.
为了净化空气,某科研单位根据实验得出,在一定范围内,每喷洒1个单位的净化剂,空气中释放的浓度y(单位:毫克/立方米)随着时间x(单位:天)变化的函数关系式近似为y=
若多次喷洒,则某一时刻空气中的净化剂浓度为每次投放的净化剂在相应时刻所释放的浓度之和.由实验知,当空气中净化剂的浓度不低于4(毫克/立方米)时,它才能起到净化空气的作用.
(1)若一次喷洒4个单位的净化剂,则净化时间可达几天?
(2)若第一次喷洒2个单位的净化剂,6天后再喷洒a(1≤a≤4)个单位的药剂,要使接下来的4天中能够持续有效净化,试求a的最小值(精确到0.1,参考数据:
取1.4).

(1)若一次喷洒4个单位的净化剂,则净化时间可达几天?
(2)若第一次喷洒2个单位的净化剂,6天后再喷洒a(1≤a≤4)个单位的药剂,要使接下来的4天中能够持续有效净化,试求a的最小值(精确到0.1,参考数据:

18.
已知函数f(x)的导函数f′(x),且对任意x>0,都有f′(x)>
.
(1)判断函数F(x)=
在(0,+∞)上的单调性;
(2)设x1,x2∈(0,+∞),证明:f(x1)+f(x2)<f(x1+x2);
(3)请将(2)中结论推广到一般形式,并证明你所推广的结论.

(1)判断函数F(x)=

(2)设x1,x2∈(0,+∞),证明:f(x1)+f(x2)<f(x1+x2);
(3)请将(2)中结论推广到一般形式,并证明你所推广的结论.
19.
已知正项等比数列{an}(n∈N*),首项a1=3,前n项和为Sn,且S3+a3、S5+a5,S4+a4成等差数列.
(1)求数列{an}的通项公式;
(2)数列{nan}的前n项和为Tn,若对任意正整数n,都有Tn∈[a,b],求b-a的最小值.
(1)求数列{an}的通项公式;
(2)数列{nan}的前n项和为Tn,若对任意正整数n,都有Tn∈[a,b],求b-a的最小值.
试卷分析
-
【1】题量占比
单选题:(11道)
选择题:(2道)
填空题:(3道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:19