上海市上海交大附属中学2015-2016学年度高二下学期期中数学试题

适用年级:高二
试卷号:644584

试卷类型:期中
试卷考试时间:2020/2/13

1.单选题(共3题)

1.
在正方体中,分别是线段的中点,则直线与直线的位置关系是(  )
A.相交B.异面C.平行D.垂直
2.
在正方体的侧面内有一动点到直线与直线的距离相等,则动点所在的曲线的形状为(   )
A.B.
C.D.
3.
(1)两个共轭复数的差是纯虚数;(2)两个共轭复数的和不一定是实数;(3)若复数是某一元二次方程的根,则是也一定是这个方程的根;(4)若为虚数,则的平方根为虚数,其中正确的个数为  (    )
A.3B.2C.1D.0

2.选择题(共1题)

4.(2007·兴化市模考)我国宏观调控的主要目标是 ( )
①促进经济增长 ②促进经济结构优化 ③增加就业 ④抑制通货膨胀 ⑤稳定物价 ⑥保持国际收支平衡

3.填空题(共15题)

5.
已知复数满足,若它们所对应向量的夹角为,则___
6.
三个平面会把空间分割成_________个部分(答出所有可能得分).
7.
如图所示,分别是正三棱柱(两底面为正三角形的直棱柱)的顶点或所在棱的中点,则表示直线是异面直线的图形有____________(填上所有正确答案的序号).
8.
二面角α﹣l﹣β的平面角为120°,在面α内,AB⊥l于B,AB=2在平面β内,CD⊥l于D,CD=3,BD=1,M是棱l上的一个动点,则AM+CM的最小值为   
9.
在棱长为1的正方体中,分别为的中点,那么直线所成角的余弦值______________.
10.
表示一个点,表示例题直线,表示两个平面,给出下列四个命题,其中正确的命题是(   )
;    ②
   ④.
A.①②B.②③C.①④D.③④
11.
异面直线角,直线,则直线所成角的范围是_____________
12.
抛物线的准线方程为________
13.
已知虚数,若,则的取值范围是_______
14.
已知内接于抛物线,焦点的垂心,则点的坐标_____________.
15.
如图,直线与抛物线交于两点,线段的垂直平分线与直线交于点,当为抛物线上位于线段下方(含)的动点时,则面积的最大值为______.
16.
已知是抛物线的焦点,上的两个点,线段AB的中点为,则的面积等于
17.
为复数,,则___________.
18.
若复数满足,则的值是____________.
19.
计算___________.

4.解答题(共5题)

20.
已知为复数,为纯虚数,
(1)当求点的轨迹方程;
(2)当时,若为纯虚数,求:的值和的取值范围.
21.
如图,已知直四棱柱底面底面为平行四边形,,且三条棱的长组成公比为的等比数列,

(1)求异面直线所成角的大小;
(2)求二面角的大小.
22.
动圆与圆相外切且与轴相切,则动圆的圆心的轨迹记
(1)求轨迹的方程;
(2)定点到轨迹(1)上任意一点的距离的最小值;
(3)经过定点的直线,试分析直线与轨迹的公共点个数,并指明相应的直线的斜率是否存在,若存在求的取值或取值范围情况.
23.
条件
(1)条件:复数,指明的说明条件?若满足条件,记,求
(2)若上问中,记时的在平面直角坐标系的点存在过点的抛物线顶点在原点,对称轴为坐标轴,求抛物线的解析式。
(3)自(2)中点出发的一束光线经抛物线上一点反射后沿平行于抛物线对称轴方向射出,求:
24.
已知复数(是虚数单位)
(1)若复数在复平面上对应点落在第一象限,求实数的取值范围;
(2)若虚数是实系数一元二次方程的根,求实数的值.
试卷分析
  • 【1】题量占比

    单选题:(3道)

    选择题:(1道)

    填空题:(15道)

    解答题:(5道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:0

    7星难题:0

    8星难题:0

    9星难题:23